

Skillet Builder Documentation

Skillets Overview

	Skillet Builder Overview

	The Skillet Framework

	SkilletBuilder Feedback

Core Elements

	Skillet Types

	Metadata Attributes

	Variables

	Jinja and Skillets

	Custom Jinja Filters

	XML and Skillets

	Capture Output

Skillet Utilities

	Skillets and GitHub

	Skillet Builder Tools

	Building and Testing with PanHandler

	Building and Testing with Appetizer

	Building and Testing with SLI

Skillet Tutorials

	Configuration

	Set Commands

	Validation

	Workflow

	Playlist Includes

Example Skillets

	Example Skillet

	Example Validation Skillet

	More Example Skillets

Skillet Builder Overview

Welcome. This site contains Skillet Builder documentation, examples, and tutorials designed to
expand the Builder community. This is a living set of content updated as new skillet types, examples, and tutorials are available.

This video contains a quick Skillet overview and a few demonstrations playing Skillets with Panhandler.

 The Skillet Framework

The Skillet Framework

The Skillet Framework is designed to create a structured yet extensible model for a multitude of skillet types.

[image: ../_images/skillet_framework.png]

View the video for a quick overview of the Skillet Framework

 SkilletBuilder Feedback

SkilletBuilder Feedback

Feedback on all aspects of SkilletBuilder and this documentation encouraged and welcome. Feel free to
submit an issue [https://github.com/PaloAltoNetworks/SkilletBuilder/issues]
on GitHub with suggestions, descriptions of bugs, or feature requests.

Support Policy

The code and templates in the repo are released under an as-is, best effort, support policy. These scripts should be
seen as community supported and Palo Alto Networks will contribute our expertise as and when possible. We do not provide
technical support or help in using or troubleshooting the components of the project through our normal support options
such as Palo Alto Networks support teams, or ASC (Authorized Support Centers) partners and backline support options.
The underlying product used (the VM-Series firewall) by the scripts or templates are still supported, but the support is
only for the product functionality and not for help in deploying or using the template or script itself. Unless
explicitly tagged, all projects or work posted in our GitHub repository (at https://github.com/PaloAltoNetworks) or
sites other than our official Downloads page on https://support.paloaltonetworks.com are provided under the best effort policy.

 Skillet Types

Skillet Types

The original skillets were focused on configuration using XML snippets.
This is now extended to include a broad array of skillet types for deployment,
validation, operations, and other needs beyond configuration.

docker

With a docker skillet, you can use any available libraries in the Docker image.
This allows you to distribute custom tools and scripts, or use existing
dockerized tools, as a skillet.

Using a docker skillet, you can create a single Docker image that contains
all your dependencies and distribute that with the Skillet metadata file.

Use cases:

	Ansible playbooks and associated libraries

	Terraform implementations

	Shell and Python scripts

View examples of docker skillets

	Prisma Access stage 1 configuration [https://github.com/PaloAltoNetworks/prisma-access-skillets/tree/master/configuration/stage_1_configuration]

	Sample docker skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/docker]

	Docker Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/docker]

panorama

Used for API-based XML configuration and operational interactions with Panorama.

Examples:

	Push XML configuration snippets that merge into the candidate configuration

	Operational commands to generate certificates or perform load config partial

	Configuration commands for move, edit, and delete

View examples of panorama skillets

	IronSkillet v9.1 Panorama [https://github.com/PaloAltoNetworks/iron-skillet/tree/panos_v9.0/templates/panos/snippets]

	Panorama Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/panorama]

Note

The panos and panorama types are functionally identical and used primarily to denote
the platform target for the skillet.

Note

The panorama and panorama-gpcs [Prisma Access] skillet types are identical, except for tool
handling of the commit models. The panorama type will only commit to Panorama while the
panorama-gpcs type will also push the configuration to Prisma Access.

panorama-gpcs

Used for API-based XML configuration and operational interactions with Panorama specific
to Prisma Access plug-in configurations.

Examples:

	Standard Panorama configuration for templates, template-stacks, and device-groups

	Plug-in configuration for service connections, remote networks, and mobile users

View examples of Prisma Access skillets

	Prisma Access Remote Network [https://github.com/PaloAltoNetworks/prisma-access-skillets/tree/master/configuration/stage_2_configuration/remote_network_onboarding]

panos

Used for API-based XML configuration and operational interactions with a PAN-OS NGFW.

Examples:

	Push XML configuration snippets that merge into the candidate configuration

	Operational commands to generate certificates or perform ‘load config partial’

	Configuration commands for move, edit, and delete

View examples of panos skillets

	Sample panos skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/panos]

	IronSkillet v9.1 PAN-OS [https://github.com/PaloAltoNetworks/iron-skillet/tree/panos_v9.0/templates/panos/snippets]

	NGFW Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/ngfw]

pan_validation

Used to capture and parse XML configuration file and operational command outputs and
match against a set of Boolean test rules.

Examples:

	Best practice configuration assessments (eg. IronSkillet)

	Dependency checks before loading configuration skillets

	Check for potential merge conflicts based on existing config elements

	Troubleshooting assistance with config/system insights

View examples of template skillets

	Iron Skillet v9.1 validations [https://github.com/PaloAltoNetworks/iron-skillet/tree/panos_v9.0/validations]

	Sample validation skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/validation]

	Validation Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/validation]

python3

Run Python scripts within a controlled virtual environment and include a web UI
instead of command line arguments. Designed to simplify sharing of Python scripts.

Current version used in PanHandler is python3.6

Examples:

	Perform content updates

	Use the NGFW and Support APIs to generate an SLR

	Generate and import configuration files to a device

View examples of python skillets

	HomeSkillet content updates [https://github.com/PaloAltoNetworks/HomeSkillet/tree/master/python_content_updates]

	Sample python skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/python]

	Python Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/python]

Note

Python scripts are useful when checking system state is required.
The best example is checking job status for a process before performing
the next task. Some skillets are stateless and do not have this capability.

rest

General purpose REST interactions with any REST-supported API. Used to view full results or
to capture to use as input variables in other skillets.

Examples:

	Prisma Access or other platform service information

	Query a device and return a list of values used in a skillet UI dropdown

	Check status of cloud platforms

View examples of rest skillets

	Sample REST skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/rest]

	HomeSkillet get zone names [https://github.com/PaloAltoNetworks/HomeSkillet/tree/panos_v9.0/rest_get_zone_names]

	Prisma Access get service information [https://github.com/PaloAltoNetworks/prisma-access-skillets/tree/master/assess/get_service_info]

	REST Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/rest]

template

This general purpose skillet type takes a text file input and renders output to screen
after variable substitutions.

Examples:

	Full XML config file generation for manual imports

	Set command outputs

	Third party text file generation as reference configurations

	Skillet workflow messaging outputs

View examples of template skillets

	Iron Skillet v9.1 set commands [https://github.com/PaloAltoNetworks/iron-skillet/tree/panos_v9.0/templates/panos/set_commands]

	Iron Skillet v9.1 XML config file [https://github.com/PaloAltoNetworks/iron-skillet/tree/panos_v9.0/templates/panos/full]

	Sample template skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/template/template_example]

	Template Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/template]

terraform

Used in conjunction with Terraform templates to deploy devices.

Examples:

	Deploy generic compute resources a public cloud

	Deploy a VM-series or Panorama in the public cloud

View examples of terraform skillets

	Deploy Panorama in Azure [https://github.com/PaloAltoNetworks/prisma-access-skillets/tree/master/deploy/azure/deploy_panorama]

	Sample Terraform skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/terraform]

	Terraform Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/terraform]

workflow

Run a series of skillets across various configurations or skillet types.

Examples:

	Query a device for attribute names then use in a configuration skillet

	Load a series of day one, network, and policy skillets based on user inputs

	Perform content updates before loading configuration elements

	Validation dependencies before loading configuration elements

View examples of workflow skillets

	HomeSkillet workflow [https://github.com/PaloAltoNetworks/HomeSkillet/tree/panos_v9.0/workflow_HomeSkillet_menu_selection]

	Sample workflow skillets [https://github.com/PaloAltoNetworks/Skillets/tree/master/workflow]

	Workflow Skillets at the Skillet District [https://live.paloaltonetworks.com/t5/Community-Skillets/tkb-p/Community_Skillets_Articles/label-name/workflow]

 Metadata Attributes

Metadata Attributes

Complete listing of all metadata attributes used in skillets.

Preamble Attributes

The preamble is the top section of the skillet providing identifying items, help text, and collection information.

name: sample_validation_skilletbuilder
label: Sample Validation Skillet

description: |
 Short set of validations for skilletBuilder training tutorial with ntp check, password complexity,
 URL filtering for malware, and security allow rules with profiles or groups

type: pan_validation
labels:
 collection:
 - Skillet Builder
 - Validation
 order: 10
 help_link: https://skilletbuilder.readthedocs.io/en/latest/reference_examples/builder_tools.html#sample-validation-skillet
 help_link_title: SkilletBuilder sample validation skillet

name

Globally unique identifier for the skillet referenced by skillet tools and workflows.

Note

The skillet name must not contain special characters such as ‘-‘ or ‘*’ or spaces. Variable names can be any
length and can consist of uppercase and lowercase letters (A-Z , a-z), digits (0-9), and the underscore
character (_). An additional restriction is that, although a variable name can contain digits, the first
character of a variable name cannot be a digit.

label

A short descriptive name identifying the skillet that is shown in PanHandler selection tiles.

description

A contextual description of the skillet presented to the user. This may include quick caveats, reminders, and
skillet intent.

type

One of the predefined Skillet Types allowing tools to determine how to play the skillet.

labels

Optional key/value pairs adding complimentary parameters that may not be implemented by all tools.
See Labels Attributes below for currently supported PanHandler labels.

Labels Attributes

Labels are key/value pairs attached to skillets. Labels are optional and allow adding additional parameters to Skillets
that may not be implemented by all utilities. Labels can be used for grouping, searching, sorting, and identifying skillets
beyond just a name attribute. Labels can be used to extend Skillet functionality in arbitrary ways going forward. This
behavior is very much influenced by BGPv4 labels and Kubernetes labels.

PanHandler recognizes the following labels:

collection

The collection label is used to group like skillets. A skillet may belong to multiple collections. The collection
label value is a list of collection to which the skillet belongs. Skillets with no collection label will be placed
in the Unknown Collection.

labels:
 collection:
 - Example Skillets
 - Test Skillets
 - Validation Skillets

order

PanHandler uses the order label to sort the skillets. Skillets without an order label are sorted alphabetically
by their label attribute. Skillets with a lower order tag will be display before those with a higher order tag.

labels:
 order: 10

help_link

The help_link label can be used to display a link to additional documentation about a skillet. This will be shown
in the Help dialog from the ? icon in the top right hand corner of the skillet input form.

labels:
 help_link: https://panhandler.readthedocs.io/en/master/variables.html

The help_link_title will set the displayed title of the help_link in the Help dialog.

labels:
 help_link: https://panhandler.readthedocs.io/en/master/variables.html
 help_link_title: All available Variable Documentation

Variables Attributes

The variables section is used to define variables and web UI attributes.

variables:
 - name: INTF_UNTRUST
 description: internet Interface
 default: ethernet1/1
 type_hint: dropdown
 source: interface_names
 - name: INTF_TRUST
 description: internal Interface
 default: ethernet1/2
 type_hint: dropdown
 source: interface_names
 - name: IP_12
 description: internal interface ip address
 default: 192.168.45.20/24
 type_hint: text
 - name: tag_color
 description: tag color
 default: red
 type_hint: dropdown
 dd_list:
 - key: green
 value: color2
 - key: orange
 value: color6
 - key: red
 value: color1

name

A name assigned to the variable.

Note

The variable name must not contain special characters such as ‘-‘ or ‘*’ or spaces. Variable names can be any
length and can consist of uppercase and lowercase letters (A-Z , a-z), digits (0-9), and the underscore
character (_). An additional restriction is that, although a variable name can contain digits, the first
character of a variable name cannot be a digit.

description

A description of the variable usage and can be displayed as part of a web form.

default

A default value of the variable, which is typically set to a recommended value.

type_hint

One of the predefined variable types and associates to web form validation. Some variable types,
such as dropdown, will use additional key/value pairs or source options for user selection.
See Variables for a complete list of type_hints and dynamic UI elements.

source

Used in lieu of static key/value pairs in type hints such as dropdown to dynamically create user selections.
See source for details and examples.

toggle_hint

Shows a field based on a reference field value. See toggle_hint for details and examples.

Snippets Attributes

name

Name of the snippet. Specifically for workflow type skillets, name references the Preamble name of a skillet
to play.

cmd

Command action to be performed. The default and values vary by skillet type. See cmd Options for additional details.

xpath

The XPath used for set, edit, and delete cmd options for panos/panorama.

element

The XML element used for set, edit, and delete cmd options for panos/panorama.

file

A skillet file to be read. This can either be a template file for template skillets, python file for
python3 skillets, or an XML file for panos/panorama skillets.

path

The URI path for REST skillets.

operation

The REST operation, either POST or GET, for REST skillets.

headers

The headers used as part of a REST API call in REST skillets.

output_type

The data format for response outputs.

outputs

The outputs assigned to a variable. The format is defined using Capture Output options.

input_type

Used in python3 skillets to specify method for parsing arguments.

image

Docker image type, such as Alpine.

label

A descriptive text associated with a test in validation skillets.

severity

Indicates user-defined severity for a test in validation skillets.

fail_message

The output message when a test fails in validation skillets.

pass_message

The output message when a test passes in validation skillets.

test

A Boolean logic test that is evaluated for validation skillets.

documentation_link

A documentation reference associated to a test in validation skillets.

when

A conditional logic that only performs a test with when is True.

transform

A dictionary that maps the output from one sub-skillet to the input of another in workflow
skillets. See the `skilletlib Workflow with Transform`_ example skillet for formatting help.

	template

	name - name of this snippet

	file - path to the Jinja2 template to load and parse

	template_title - (Optional) title to include in rendered output

	when - (Optional) conditional logic for snippets execution

	terraform

	None - snippets are not used for terraform

See Example here: Example Terraform Skillet

	workflow

	name - name of this sub-skillet to play

	when - (Optional) conditional logic for sub-skillet execution

	transform - (Optional) mapping of another snippet’s output variable to this
snippet’s input variable.

cmd Options

set

Merges element into the candidate configuration for panos/panorama skillets.

edit

Replaces configuration element with new element for panos/panorama skillets.

delete

Deletes part of the configuration for panos/panorama skillets.

get

Pulls information from a device for panos/panorama skillets.

move

Moves a configuration element for panos/panorama skillets.

parse

Parses an input file.

cli

Run an operations CLI commands such as show system info for panos/panorama/validation skillets.

validate

Run a validation test for validation skillets.

validate_xml

TBD; validation

noop

TBD; validation

custom inputs

In this case instead of a cmd option, the skillet includes a command line string, such as ansible playbook command.

	rest

Snippet Attributes per Skillet Type

Below describes the fields for a snippet depending on the skillet type:

	docker

	name - name of this snippet

	image - Docker image to run

	cmd - the command to run inside of the Docker container

	when - (Optional) conditional logic for snippets execution

	panos, panorama, panorama-gpcs

	name - name of this snippet

	cmd - operation to perform. Default is set. See the cmd Options for all available options.

	xpath - XPath where this fragment belongs

	file - path to the XML fragment to load and parse. Interchangeable with element

	element - inline XML fragment to load and parse. Interchangeable with file

	when - (Optional) conditional logic for snippets execution

See Example here: Example PAN-OS Skillet

	pan_validation

	name - name of the validation test to perform

	cmd - validate, validate_xml, noop, or parse. Default is validate

	test - Boolean test to perform using Jinja2 expressions

	when - (Optional) conditional logic for snippets execution

See Example here: Example Validation Skillet

	python3

	name - name of the script to execute

	file - relative path to the python script to execute

	input_type - Optional type of input required for this script. Valid options are ‘cli’ or ‘env’.
This will determine how user input variables will be passed into into the script. The default is cli and will
pass variables as long form arguments to the script in the form of --username=user_input where username
is the name of the variable defined in the variables section and user_input is the value entered for
that variable from the user. The other option, env, requires all defined variables to be set in the environment
of the python process.

	when - (Optional) conditional logic for snippets execution

See Example here: Example Python Skillet

	rest

	name - unique name for this rest operation

	path - REST URL path component path: http://host/api/?type=keygen&user={{ username }}&password={{ password }}

	operation - type of REST operation (GET, POST, DELETE, etc)

	payload - path to a Jinja2 template to load and parse to be send as POSTed payload. For x-www-form-urlencded,
this must be a json dictionary

	headers - a dict of key value pairs to add to the http headers. For example, Content-Type: application/json.

	when - (Optional) conditional logic for snippets execution

See Example here: Example REST Skillet and here: Example REST Skillet with Output Capturing

	template

	name - name of this snippet

	file - path to the Jinja2 template to load and parse

	template_title - (Optional) title to include in rendered output

	when - (Optional) conditional logic for snippets execution

	terraform

	None - snippets are not used for terraform

See Example here: Example Terraform Skillet

	workflow

	name - name of this sub-skillet to play

	when - (Optional) conditional logic for sub-skillet execution

	transform - (Optional) mapping of another snippet’s output variable to this
snippet’s input variable.

	name - unique name for this rest operation

	path - REST URL path component path: http://host/api/?type=keygen&user={{ username }}&password={{ password }}

	operation - type of REST operation (GET, POST, DELETE, etc)

	payload - path to a Jinja2 template to load and parse to be send as POSTed payload. For x-www-form-urlencded,
this must be a json dictionary

	headers - a dict of key value pairs to add to the http headers. For example, Content-Type: application/json.

	when - (Optional) conditional logic for snippets execution

 Variables

Variables

Variables in a Skillet determine what a user can modify or customize before deployment. In Panhandler, these get
generated into a web form that a user can fill out. Each variable can have it’s own ‘type’ determined by the ‘type_hint’
attribute in the variable declaration. This page lists all the available type hints for reference.

The Skillet repo contains a sample skillet with all inputs [https://github.com/PaloAltoNetworks/Skillets/blob/master/inputs/all_inputs/.meta-cnc.yaml].

Variable Types

cidr

This type will ensure the entered value matches an IPv4 or IPv6 CIDR.

- name: ip_address
 description: IP Address
 default: 192.168.122.2/24
 type_hint: cidr

disabled

This type will show the default value in an input control, but the user cannot change it. This is useful to
show values but not allow then to be changed.

- name: DISABLED
 description: No Bueno
 default: panos-01
 type_hint: disabled

dropdown

This type will render a select input control. This ensures the user can only select one of the options
given in the dd_list.

- name: yes_no
 description: Yes No
 default: 'no'
 type_hint: dropdown
 dd_list:
 - key: 'Yes I do'
 value: 'yes'
 - key: 'No I dont'
 value: 'no'

Note

The default parameter should match the value and not the key. The key is what will be shown to the user
and the value is what will be used as the value of the variable identified by name.

Warning

Some values such as yes, no, true, false, on, off, etc are treated differently in YAML. To ensure these values are
not converted to a boolean type, ensure to put single quotes ‘ around both the key and the value as in
the example above. Refer to the YAML specification for more details: https://yaml.org/type/bool.html

email

This type will ensure the entered value matches an email pattern.

- name: email
 description: Email
 default: support@noway.com
 type_hint: email
 help_text: Enter your email address here to receive lots of spam

file

This type will upload a file to a temporary directory and set the variable value to the full path to the file. This
is useful for python Skillets to take the file path as an input and open and handle the file contents itself.

- name: uploaded_file_path
 description: Upload a File
 default:
 type_hint: file

float

This type will ensure the entered value is a float. You may optionally supply the min and max
attributes to ensure the entered value do not exceed or fall below those values.

- name: price_per_mbps
 description: Price Per Mbps
 default: 1.50
 type_hint: float
 attributes:
 min: 1.00
 max: 500.00

fqdn_or_ip

This type will ensure the entered value matches an IPv4, IPv6, or a valid hostname pattern. This is the most
flexible option for hostname, FQDNs, ip addresses or CIDRs.

- name: host
 description: Target Host
 default: 0.pool.ntp.org
 type_hint: fqdn_or_ip

hidden

This type will NOT show an input form control to the user, but the default value will be passed to the
skillet. This is useful is you want to ‘capture’ an input from another skillet and pass it into the input
of this skillet without having to include it in the input form.

- name: previous_value
 description: from previous skillet in workflow
 default: some_value
 type_hint: hidden

ip_address

This type will ensure the entered value matches an IPv4 or IPv6 pattern without a subnet mask.

- name: ip_address
 description: IP Address
 default: 0.0.0.0
 type_hint: ip_address

json

This type renders a TextArea input control and ensures the input is properly formatted JSON data

- name: json_string
 description: JSON Input
 default: |
 {
 "key_test": "value_test",
 "key2_test": "value2_test",
 }
 type_hint: json

list

This type will allow the user to input multiple entries. The values of the multiple
entries will be converted to an appropriate type for the Skillet type being used. For
python, the entries will be converted to a comma separated list. For Terraform, the
values will be converted to a terraform appropriate string representation.

- name: list_input
 description: IP Subnets
 default: 10.10.10.1/24
 type_hint: list

number

This type will ensure the entered value is an integer. You may optionally supply the min and max
attributes to ensure the entered value do not exceed or fall below those values.

- name: vlan_id
 description: VLAN ID
 default: 1001
 type_hint: number
 attributes:
 min: 1000
 max: 2000

password

This type will mask user input by rendering a password type input box.

- name: user_password
 description: Firewall Password
 default:
 type_hint: password

radio

This type allows the user to select one option out of the rad_list.

- name: radio_box_example
 description: radios
 default: maybe
 type_hint: radio
 rad_list:
 - key: 'Yes'
 value: 'yes'
 - key: 'No'
 value: 'no'
 - key: 'Maybe'
 value: 'maybe'

text

Default input type for user input. Optional allow_special_characters if false will ensure only
letters, digits, underscore, hyphens, and spaces are allowed in the input. Set to True to allow all special
characters. Default is to allow special characters. Optional attributes allows forcing a minimum and/or
maximum length of the entered value.

- name: FW_NAME
 description: Firewall hostname
 default: panos-01
 type_hint: text
 help_text: Hostname for this firewall.
 allow_special_characters: false
 attributes:
 min: 6
 max: 256

text_area

This type renders a TextArea input control. This allows the user to enter multiple lines of input. The optional
attributes attribute allows you to customize the size of the text area control.

- name: text_area
 description: Multi-Line Input
 default: |
 This is some very long input with lots of
 newlines and white space
 and stuff. The optional attributes key can also be specified
 to control now the text_area is rendered in panhandler and other cnc apps.
 type_hint: text_area
 attributes:
 rows: 5
 cols: 10

url

This type will ensure the entered value matches a valid URL scheme.

- name: clone_url
 description: Git Repo Clone URL
 default: https://github.com/PaloAltoNetworks/Skillets.git
 type_hint: url

Dynamic UI Elements

In some cases, it may be desirable for the UI to be more dynamic. Each variable can include ‘hints’ about how the UI
should behave, but these, of course, are not guaranteed to be implemented in all tooling. Panhandler will produce
dynamic UI elements in the following cases:

source

The optional source attribute on dropdown, radio, and checkbox type_hints will use the value of the ‘source’
attribute as a variable. If this variable is found in the context and it is a list,
it’s value will be used to populate the form control. If the variable is not found, the form control reverts
to a standard ‘text’ input as a fallback.

- name: selected_interface
 description: Interface
 default: not-saved
 type_hint: dropdown
 source: interface_names

If the ‘type_hint’ is ‘text’ and the ‘source’ variable is a list, then multiple text input controls will be shown
to the user, one for each item in the list. The resulting variable captured after the form is POSTed will be a
‘dict’ with a key for each item in the list, and it’s value from the user. This is useful to capture things like
an ip address for each interface in a list.

- name: interface_ips
 description: Interface IP Address For
 default: 10.10.10.10
 type_hint: text
 source: interface_names

In this example, a text input control will be generated for each of the items found in the ‘interface_names’ list.
Assume the ‘interface_names’ variable contained the following:

"interface_names": [
 "ethernet1/1",
 "ethernet1/2",
 "ethernet1/3",
 "ethernet1/4",
]

The resulting UI form will include 4 Text inputs. The item in the list will be appended to the description
and used as the text input label. After the user fills in the information in all 4 text inputs, the
interface_ips variable in the jinja context will have the following structure:

"interface_ips": {
 "ethernet1/1": "10.10.10.11",
 "ethernet1/2": "10.10.10.12",
 "ethernet1/3": "10.10.10.13",
 "ethernet1/4": "10.10.10.14",
}

Panorama Variables

This model is also useful when working with Panorama template variables. A list of Panorama variable names
can be the source and the user-entered values captured as a dict. The snippet below shows the use
of a Jinja For loop iterating over the dict ‘template_variables’ as part of device onboarding.

<entry name="{{ serial_number }}">
 <variable>
 {%- for var_name, var_value in template_variables.items() %}
 <entry name="{{ var_name }}">
 <type>
 <ip-netmask>{{ var_value }}</ip-netmask>
 </type>
 </entry>
 {% endfor %}
 </variable>
</entry>

toggle_hint

The optional ‘toggle_hint’ attribute will show a field only when the ‘source’ variable’s value matches the
configured ‘value’. If the ‘source’ is not found, or it’s current value does not match ‘value’, this form
control will be hidden. This is especially useful when paired with a ‘dropdown’ select control.

- name: bgp_asn
 description: Only Required when BGP is enabled
 default: 64000
 type_hint: text
 toggle_hint:
 source: bgp_type
 value: enable

Panhandler Generated UI

Because Skillets are essentially tooling agnostic, it’s up to the tool to implement the UI presented to the user.
Some tools may prefer a different approach, or may not even need a UI at all. For example, in a CI/CD pipeline, the
value of the variables may be obtained via the OS environment. A script may use command line arguments, etc.

Panhandler generates a fully customized UI for each Skillet that is configured via the types of ‘type_hint’ supplied
with each variable. By default, this is a static web form with a single input form control for each
variable.

 Jinja and Skillets

Jinja and Skillets

Jinja is a templating language for Python and used within the skillet framework to:

	allow variable value substitution

	provide lightweight coding logic such as if and for

	apply filters to format data

	leverage filters for validation testing logic

[image: ../_images/jinja_engine.png]

Content objects are collected from the skillet and passed through the rendering engine.

The video tutorial covers Jinja variables, if conditionals, and for loops.

 Custom Jinja Filters

Custom Jinja Filters

Custom filters are used to simplify validation skillets by using a small set of filter options
to check the most common configuration components contained in tags, attributes, and element text values.

Review the XML Basics documentation for the XML terminology used in the custom filters.

Additional examples can be found in the skilletlib examples directory [https://github.com/nembery/skilletlib/tree/master/example_skillets]

Capturing XML Objects

In order to properly validate a config it is often necessary to convert the XML structure to an object, which
can then be used in a Jinja expression to perform basic logic and validation. The captured object is associated to
an XPath plus its corresponding XML element and assigned a variable name used in the custom filter.

Each custom filter example below shows its respective captured object for use in the filter.

When building skillets, the Builder needs to:

	know the XPath for each object to capture

	determine what part of the XML element will be referenced: attribute, tag, element text value

	which custom filter to select based on the XML element reference

	what conditions have to be met: a specific or range of values, item present or absent, etc.

Checking Attributes

Attribute filters are most commonly used to check object names although other attributes can exist within the XML configuration.

attribute_present(tag name, attribute name, attribute value)
attribute_absent(tag name, attribute name, attribute value)

The attribute being checked in this example is the external-list entry name.
Therefore the input values for the attribute filters are:

	tag name: <entry>

	attribute name: ‘name’

	the attribute value of interest

A sample XML element found at XPath /config/devices/entry[@name='localhost.localdomain']/vsys/entry[@name='vsys1']/external-list
is used as reference for the attribute custom filters examples. The element will be a captured object variable called
external-list.

<external-list>
 <entry name="tutorial_edl">
 <type>
 <ip>
 <recurring>
 <five-minute/>
 </recurring>
 <description/>
 <url>http://tutorial.com</url>
 </ip>
 </type>
 </entry>
 <entry name="my_edl">
 <type>
 <ip>
 <recurring>
 <five-minute/>
 </recurring>
 <description/>
 <url>http://my_url.com</url>
 </ip>
 </type>
 </entry>
</external-list>

attribute_present

Checks if an attribute value exists and returns True if the attribute value is found. This filter is
used to ensure a named object or policy exists in the configuration. This item should be present as part
of a best practice validation or other config skillets may have dependencies on this item.

external-list | attribute_present('entry', 'name', 'my_edl')
external-list | attribute_absent('entry', 'name', 'new_edl')

The first filter will return True since my_edl is in the external-list object. The second filter will return False since
new_edl is not in the external-list object.

attribute_absent

Checks if an attribute value exists and returns True if the attribute value is not found. This filter is
used to ensure a named object or policy does not already exist in the configuration. If the item exists
it may cause config merge conflicts or override an existing configuration.

external-list | attribute_absent('entry', 'name', 'my_edl')
external-list | attribute_absent('entry', 'name', 'new_edl')

The first filter will return False since my_edl is in the external-list object.
The second filter will return True since new_edl is not in the external-list object.

Checking an Element Value

Element value filters are most commonly used to check specific text values in the XML configuration.

element_value('tag name') [expression] value

Any valid jinja expression can be used to evaluate the text value.

A sample XML element found at XPath /config/devices/entry[@name='localhost.localdomain']/deviceconfig/system
will be used as reference for the element value custom filter example. The element will be a captured object variable called
device_system.

<update-schedule>
 <anti-virus>
 <recurring>
 <hourly>
 <at>4</at>
 <action>download-and-install</action>
 </hourly>
 </recurring>
 </anti-virus>
 <wildfire>
 <recurring>
 <every-min>
 <action>download-and-install</action>
 </every-min>
 </recurring>
 </wildfire>
</update-schedule>
<snmp-setting>
 <access-setting>
 <version>
 <v3/>
 </version>
 </access-setting>
</snmp-setting>
<ntp-servers>
 <primary-ntp-server>
 <ntp-server-address>0.pool.ntp.org</ntp-server-address>
 </primary-ntp-server>
 <secondary-ntp-server>
 <ntp-server-address>1.pool.ntp.org</ntp-server-address>
 </secondary-ntp-server>
</ntp-servers>
<login-banner>You have accessed a protected system.
 Log off immediately if you are not an authorized user.
</login-banner>
<timezone>EST</timezone>

element_value

Checks an element_value expression and returns True if the expression is true. This filter is
used to check a specific value or range based on best practices or expected configuration settings.
Various checks such as ‘==’, ‘!=’, ‘>=’, and ‘<=’ can be used in the filter.

device_system | element_value('update-schedule.wildfire.recurring.every-min.action') == 'download-and-install'
device_system | element_value('timezone') == 'UTC'

The first filter uses the dot notation to step down the tree to the wildfire dynamic update action.
This allows a single captured object to be used for multiple tests instead of an explicit capture object
for each test using a granular XPath. The filter will return True since the action for Wildfire updates is
set to ‘download-and-install’.

The second filter will return False since the XML configuration for timezone is ‘EST’ and not ‘UTC’.

Checking Tags

The tag filters are most commonly used to check specific tags that are used in the data structure as configuration values.

tag_present('tag name')
tag_absent('tag name')

The example below references the same device_system captured object used in the element_value example.

tag_present

Checks for a tag name and returns True if the tag is found. This filter is
used to check for a specific tag in cases where configuration values are tags instead of text values.
In the device_system example the recurring interval for Wildfire updates is a tag shown as <every-min>

device_system | tag_present('update-schedule.wildfire.recurring.every-min')
device_system | tag_present('update-schedule.wildfire.recurring.every-hour')

The filters use the dot notation to step down the tree to the wildfire recurring interval.
This allows a single captured object to be used for multiple tests instead of an explicit capture object
for each test using a granular XPath.

The first filter will return True since the Wildfire update interval is
set to ‘every-min’. The second filter will return False since every-hour is not found.

Other examples using tag_present from the same device_system capture object:

device_system | tag_present('snmp-setting.access-setting.version.v3') --> check if SNMP v3 configured
device_system | tag_present('ntp-servers.primary-ntp-server') --> check if an NTP server is configured

tag_absent

Checks for a tag name and returns False if the tag is found. This filter is
used to check for tag-based configuration components that should NOT exist in the configuration.
In the device_system example the recurring interval for Wildfire updates is a tag shown as <every-min>

device_system | tag_absent('update-schedule.wildfire.recurring.every-min')
device_system | tag_absent('update-schedule.wildfire.recurring.every-hour')

The filters use the dot notation to step down the tree to the wildfire recurring interval.
This allows a single captured object to be used for multiple tests instead of an explicit capture object
for each test using a granular XPath.

The first filter will return False since the Wildfire update interval is
set to ‘every-min’. The second filter will return True since every-hour is not found.

Checking a Set of Element Values

In some cases multiple values are contained with a portion of the configuration. These are often referenced in the
configuration file with <member> tags. Examples of multiple entries include:

	zones, addresses, users, or tags assigned to a security policy

	URL categories assigned to block or alert actions

	interfaces assigned to a zone or virtual-router

To check multiple element values, the element_value_contents custom filter can search across all members to find a
specific value.

element_value_contains

The inputs to the filter are the tag name and the search value.

element_value_contains('tag name', 'search value')

This example checks a security rule to see if a specific destination address using an external-list is found. The XPath
for the Outbound Block Rule is
/config/devices/entry[@name=’localhost.localdomain’]/vsys/entry[@name=’vsys1’]/rulebase/security/rules/entry[@name=’Outbound Block Rule’]

Below is an abbreviated XML element showing the <destination> content of interest.

<entry name="Outbound Block Rule">
 <to>
 <member>any</member>
 </to>
 <from>
 <member>any</member>
 </from>
 <destination>
 <member>panw-highrisk-ip-list</member>
 <member>panw-known-ip-list</member>
 <member>panw-bulletproof-ip-list</member>
 </destination>
 <action>deny</action>
 <log-setting>default</log-setting>
 <tag>
 <member>Outbound</member>
 </tag>
</entry>

The custom filter looks for the inclusion of the panw-bulletproof-ip-list EDL as a destination address.

security_rule_outbound_edl | element_value_contains('destination.member', 'panw-bulletproof-ip-list')

Since the member value is found a True result is returned.

Referencing the same example, other element_value_contains checks could be used for <to> or <from> zones and
<tag> members.

 XML and Skillets

XML and Skillets

A basic understanding of eXtensible Markup Language (XML) structure and terminology is required for
PAN-OS and Panorama skillets.
These devices use XML as the format for the configuration file and operational command responses.

A more extensive knowledge of XML is required for validations skillets in order to capture output and perform tests
against the XML configurations and operational commands.

You can explore the XML standard [https://www.w3.org/standards/xml/core] but it isn’t required for skillet work. Instead we’ll focus on the XML details
of the device configuration files.

XML Basics

The basics covers the essentials of XML terminology and structure.

 Capture Output

Capture Output

Various models for capturing output to variables used in:

	validation tests

	dynamic menu options

	text render outputs

capture_list

Use to capture a list of values. This example creates a list of all URL-filtering profile names and stores them
in the varilable ‘url_filtering_profiles’.

get list of all url profiles for debug example
- name: url_filtering_profiles
 capture_list: |-
 /config/devices/entry[@name='localhost.localdomain']/vsys/entry[@name='vsys1']/profiles/url-filtering/entry/@name

Using a sample IronSkillet configuration, the output list is

url_filtering_profiles = [
 "Outbound-URL",
 "Alert-Only-URL",
 "Exception-URL"
]

capture_object

Use to capture an XML element as a dict object. This example creates the dict using all password-complexity
configuration elements and stores it in a dict variable called ‘password_complexity’.

- name: password_complexity
 capture_object: /config/mgt-config/password-complexity

Using a sample IronSkillet configuration, the output dict in json format is

password_complexity = {
 "password-complexity": {
 "enabled": "yes",
 "minimum-length": "12",
 "minimum-uppercase-letters": "1",
 "minimum-lowercase-letters": "1",
 "minimum-numeric-letters": "1",
 "minimum-special-characters": "1",
 "block-username-inclusion": "yes",
 "password-history-count": "24",
 "new-password-differs-by-characters": "3"
 }
}

capture_value

Use to capture a single value and store as a variable. This example captures the value of the password-complexity
enabled setting and stores it in a variable called ‘password_complexity_enabled’.

- name: password_complexity_enabled
 capture_value: /config/mgt-config/password-complexity/enabled/text()

Using a sample IronSkillet configuration, the captured value is

password_complexity_enabled = "yes"

capture_pattern

TODO: define and determine if still used

 Skillets and GitHub

Skillets and GitHub

The Skillet Framework uses GitHub as the primary option for storing skillets.

Click below to jump to a specific section:

	Create a New Github Repository

	Add SSH Keys from PanHandler into Github

	Import a Repository into PanHandler

	Create a Skillet Directory

	Use Submodules

Create a New GitHub Repository

Login to GitHub and select New to add a new repository.

[image: ../_images/new_repo_button.png]

Enter details for the repo. Adding a README.md file and an MIT license are recommended. You can also add a .gitignore
file, primarily to ignore pushing any EDI directories such as .idea/ used by PyCharm.

[image: ../_images/create_repo_settings.png]

Once the repository is created, click the green Code button to clone either the HTTPS or SSH URL. For the purposes
of working with PanHandler and later tutorials, the SSH option is recommended. Click the Clipboard button to copy
the URL.

[image: ../_images/clone_ssh_link.png]

Add SSH Keys from PanHandler into GitHub

If you are using the SSH URL to import a GitHub repository into PanHandler, you must add your PanHandler SSH keys into
your GitHub account.

In PanHandler, navigate to the top right of the page to find the ‘paloalto’ user settings.
Click the dropdown menu and select View SSH Public Key.

[image: ../_images/view_ssh_public_key.png]

On this screen you should see your ssh key. Copy the entire key (include ‘ssh-rsa’ at the beginning and ‘PAN_CNC’ at
the end.

[image: ../_images/copy_ssh_key.png]

Navigate back to GitHub. In the top right, click the dropdown menu next to your user icon and click Settings.

[image: ../_images/github_settings.png]

Find the SSH and GPG keys settings and click the green New SSH key button.

[image: ../_images/github_new_ssh_key.png]

Give the SSH key a title and paste the key copied from PanHandler. Click the green Add SSH key button.

[image: ../_images/github_add_key.png]

Import a Repository into PanHandler

Please refer to the instructions above in order to copy the GitHub repository link to your clipboard.
Navigate to PanHandler. Click the PanHandler dropdown menu in the top left corner and select Import Skillets.

[image: ../_images/panhandler_dropdown.png]

Scroll down the page and locate the Import Repository Section. Enter the name of the repository and paste the URL
you copied from the above step. Click Submit. Make sure you are using the SSH URL as opposed to the HTTPS URL.

[image: ../_images/import_skillet.png]

Create a Skillet Directory

Prerequisites for creating a skillet directory:

	A new repository created on GitHub

	Text editor/IDE of choice (PyCharm, Sublime, etc.)

From the steps above, make sure that you’ve cloned the link for the repo you just created.
In a terminal/bash shell enter the following:

> git clone {GitHub repository link}

This will add a directory to your local machine with the contents of the repository.
Open this directory in your text editor/IDE. If you don’t already have a README.md file, you can add one now.
Follow the ‘Configuration Tutorial’ to learn what to add in the README.md file.

Create a sub-directory that will contain the skillet content. Name the sub-directory something relevant to the skillet
that will be created here.

Add a file with the name .skillet.yaml inside the sub-directory and another README.md.

[image: ../_images/skillet_directory_files.png]

Leave these files blank for now; they will be populated later on in the tutorial.

Use Submodules

A submodule is a reference within a host Github repository that points to a specific commit in an external repository.
Submodules are used to include external content in a repository in a manner that can be easy updates and referenced.
In terms of skillets, the Playlist Include skillet framework uses submodules to reference

To initiate a submodule within a host repository, use the command git submodule add <submodule_clone_link>. This is
similar to cloning a repository to a host machine. The contents of the submodule repository will be ‘copied’ to the
working tree of the host repository and will be viewable if the host repository is cloned. It is recommended to navigate
to a folder within the host repository before initiating a submodule to keep your working tree clean. On GitHub, the
submodule will appear similarly to the ones below.

[image: ../_images/submodule_in_repository.png]

When a submodule is added to a host repository for the first time, a new .gitmodules file will be created automatically.
This file contains information about the connection between the submodule and host repository. Adding more than one
submodule will create additional entries in the .gitmodules file.

An example of an entry in the .gitmodules file is:

[submodule "submodules/ironskillet-components"]
 path = submodules/ironskillet-components
 url = https://gitlab.com/panw-gse/as/ironskillet-components.git

When cloning a repository with a submodule, existing submodules will need to be initiated and updated before use.
To do this, run the following commands:

	clone the repository

	open the repository

	run git submodule init

	run git submodule update

Submodules are tied to a specific commit when initiated, so they will need to be updated to pull the newest
content from the submodule repository as needed. This can be done using the git submodule update --remote --merge
command. This will update all submodules added within a host repository to the latest commit.

 Skillet Builder Tools

Skillet Builder Tools

The Skillet Builder tools repo [https://github.com/PaloAltoNetworks/SkilletBuilder] contains a suite of tools to help create and test
skillets.

Import to panHandler as part of the Skillet Builder sandbox. The skillets are
part of the Skillet Builder collection.

Generate a Skillet

Used to generate an XML configuration skillet for PAN-OS or Panorama.
The generator creates an output of XPath and XML element snippets by analyzing
the difference between two XML configuration files.

[image: ../_images/Generate_Skillet_tile.png]
Generate a Skillet steps:

	Choose online or offline mode to obtain the ‘before and after’ configurations

	Enter the yaml file preambles values

	Copy the rendered output to the skillet .meta-cnc.yaml file

When running the generator choose between offline (From uploaded Configs) and online (From Running NGFW) mode.

[image: ../_images/Generate_Skillet_running_or_offline.png]

Generator Offline Mode

Recommended when generating a skillet from a custom base configuration typically
for add-on configuration skillets. Select a base and modified configuration to compare.

[image: ../_images/Generate_Skillet_offline_option.png]

Note

Export the configuration files from the NGFW or Panorama before running the generator.

Generator Online Mode

Uses an ‘out of the box’ empty configuration as the baseline. This is useful to
generate skillets for complete configurations used in demonstrations and POCs.
Enter the device API credentials to export the running or candidate configuration
file.

[image: ../_images/Generate_Skillet_online_mode_menu.png]

Note

The skillet attempts to ensure correct snippet ordering. In some cases the snippets must be manually
reordered based on load order dependencies.

Skeleton YAML file attributes

After the files are captured the user is prompted for the skillet preamble information.

[image: ../_images/Generate_Skillet_yaml_skeleton.png]

	Skillet ID: unique name for the skillet

	Skillet Label: short text label used for skillet selection

	Skillet description: descriptive text outlining the skillet usage

	Collection Name: contextual name to group skillets

	Skillet type: type of skillet (eg. panos, panorama, pan_validation)

Copy the Rendered Output to .meta-cnc.yaml

The output is a complete skillet metadata file. Copy the text and paste into the .meta-cnc.yaml file
for the respective skillet. The .meta-cnc.yaml file can be further edited adding variables and pasted
into the Skillet Test Tool for local testing without the requirement to push to Github.

The configuration tutorial skillet [https://github.com/PaloAltoNetworks/SkilletBuilder/blob/master/sample_xml_edl_policy/.meta-cnc.yaml] shows the output of the skillet generator used in the .meta-cnc.yaml file.
This is the difference between an existing configuration file as base and a modified configuration file
including the tag, external-list, and security policy configuration elements. After the generation, the skillet file
was edited to include the variable components.

Preview XML Changes

Analyzes the difference between two XML files and outputs the changes in red.

[image: ../_images/Preview_XML_Changes_tile.png]

When running the previewer choose between offline (From uploaded Configs) and online (From Running NGFW) mode.

[image: ../_images/Preview_XML_Changes_offline_or_online_mode.png]

XML Preview Offline Mode

Recommended when previewing a skillet from a custom base configuration.
Select a base and modified configuration to compare.

[image: ../_images/Preview_XML_Changes_offline_mode_files.png]

Note

Export the configuration files from the NGFW or Panorama before running the previewer.

XML Preview Online Mode

Uses an ‘out of the box’ empty configuration as the baseline. This is useful to
preview skillets to see a broad set of changes.
Enter the device API credentials to export the running or candidate configuration
file.

[image: ../_images/Preview_XML_Changes_online_mode_API_values.png]

View the Changes

After the skillet plays the output to screen includes a list of modified XPaths and the full configuration
file with changes highlighted with red text.

[image: ../_images/Preview_XML_Changes_modifications_xpaths.png]

The XPaths are active links and will jump to its respective section of the configuration file.

[image: ../_images/Preview_XML_Changes_modifications_elements.png]
The red text associates to the tag and external-list XPath configuration elements.

The preview can be useful to see the configuration surrounding outputs from the skillet generator to assist
with any manual skillet tuning.

Generate Set CLI Commands

In some cases it is preferred to use set commands instead of XML API configuration. This skillet finds the difference
between two configuration files and outputs the associated set commands.

[image: ../_images/Generate_Set_Commands_tile.png]

When running the generator choose between offline (From uploaded Configs) and online (From Running NGFW) mode.

[image: ../_images/Generate_Set_Commands_offline_or_offline_selection.png]

Generate Set Commands Offline Mode

Recommended when generating a skillet from a custom base configuration typically
for add-on configuration skillets. Select a base and modified configuration to compare.

[image: ../_images/Generate_Set_Commands_offline_files_to_upload.png]

Note

Export the configuration files from the NGFW or Panorama before running the generator.

Generate Set Commands Online Mode

Uses an ‘out of the box’ empty configuration as the baseline. This is useful to
generate skillets for complete configurations used in demonstrations and POCs.
Enter the device API credentials to export the running or candidate configuration
file.

[image: ../_images/Generate_Set_Commands_online_mode_API_values.png]

View the Rendered Output

A list of output set commands will be displayed on screen.

[image: ../_images/Generate_Set_Commands_set_commands.png]

Note

The skillet attempts to ensure correct set command ordering. In some cases the commands must be manually
reordered based on load order dependencies.

Skillet Test Tool

The test tool is used to play skillets without the need to upload to Github and update the repo in panHandler.
Debug outputs can be used for enhanced skillet testing.

[image: ../_images/Skillet_Test_Tool_tile.png]

When running the test tool choose between Offline and Online modes. Also select Debug mode if required.

Skillet Test Offline Mode

	validation skillets: paste in a configuration text file without requiring API access

	other skillet types: not applicable and may generate errors

[image: ../_images/Skillet_Test_Tool_offline_mode_text_box.png]

Note

Export the configuration files from the NGFW or Panorama before running the test tool.

Skillet Test Online Mode

	panos/panorama: load skillet snippets using API credentials

	validation: use API credentials to export the file and run the validation

	rest: run the skillet with REST credentials and output the results

[image: ../_images/Skillet_Test_Tool_oneline_mode_API_values.png]

Debug Mode

If True provides extended output after the skillet is complete.

	output response messages after skillet execution: success or failed responses

	.meta-cnc.yaml text

	context variable values

	For validation skillets this shows the capture outputs to assist with skillet testing and tuning.

[image: ../_images/Skillet_Test_Tool_debug_mode_select.png]

Skillet Content

This is the skillet to be played. Paste in the complete .meta-cnc.yaml file content including the preamble.

[image: ../_images/Skillet_Test_Tool_skillet_content.png]

Note

In panHandler this content is cached and will appear each time the Test Tool skillet is used. This allows for
minor editing in the tool to quickly test skillets. However if extensive edits are required, edits
should be done in the skillet editor to ensure YAML syntax and alignment is correct.

Test Tool Output

Based on the skillet type and debug mode, output will vary.

[image: ../_images/Skillet_Test_Tool_output.png]

More detailed outputs and using the test tool is covered in the details for building skillets.

Configuration Explorer Tool

The Configuration Explorer Tool is used to display XML elements and values based on XML parsing syntax.

	Used to discover capture outputs in validation skillets

	assist with manual exploration of XPath and XML element associations

[image: ../_images/Skillet_Test_Tool_tile.png]
When running the explorer tool choose between Offline and Online modes. Also select Debug mode if required.

Config Explorer Offline Mode

In offline mode the user pastes in the XML configuration file without the use of API interactions.

[image: ../_images/Configuration_Explorer_Tool_offline_mode_input.png]

Note

Export the configuration files from the NGFW or Panorama before running the test tool.

Config Explorer Online Mode

Exports the device configuration based on the API values.

[image: ../_images/Configuration_Explorer_Tool_online_mode_API_values.png]

XPATH Query

The XPath query to use against the configuration file.

[image: ../_images/Configuration_Explorer_Tool_xpath_query.png]

Example XPath queries and syntax details are covered in the Parsing Syntax Basics documentation.

Configuration Explorer Output

The output shows the results of the XPath query as an XML element, value, or list of values. This is determined by
the input query syntax.

[image: ../_images/Configuration_Explorer_Tool_output.png]

Output details include:

	the XPath queried

	XML results as an XML element, value, or list of values

	JSON version of the XML results

Sample Configuration Skillet

This skillet provides a reference configuration skillet used in the tutorial content.

[image: ../_images/Sample_Configuration_tile.png]

Configuration includes:

	tag snippet with tag name, description, and color variables

	external-list snippet with external-list name, description, and URL variables

	Inbound and Outbound block security policies referencing tag and external-list variables

[image: ../_images/Sample_Configuration_input_variables.png]

View the details of the configuration skillet [https://github.com/PaloAltoNetworks/SkilletBuilder/blob/master/sample_xml_edl_policy/.meta-cnc.yaml]

Sample Validation Skillet

This skillet provides a reference validation skillet used in the tutorial content.

[image: ../_images/Sample_Validation_tile.png]

Validation includes:

	check that NTP servers are configured

	check that password complexity is enabled with a 12 char minimum password

	check that all url-filtering profiles block category malware

	check that all allow security policies include a profile or group

[image: ../_images/Sample_Validation_output.png]

View the details of the validation skillet [https://github.com/PaloAltoNetworks/SkilletBuilder/blob/master/sample_validation_skillet/.meta-cnc.yaml]

Skillet YAML File Template

This skillet uses a simple text render to generate a starter .meta-cnc.yaml formatted output.

[image: ../_images/Skeleton_YAML_tile.png]

Skeleton file inputs include:

	Skillet ID: unique name for the skillet

	Skillet Label: short text label used for skillet selection

	Skillet description: descriptive text outlining the skillet usage

	Collection Name: contextual name to group skillets

	Skillet type: type of skillet (eg. panos, panorama, pan_validation)

[image: ../_images/Skeleton_YAML_inputs.png]

View the skeleton YAML template [https://github.com/PaloAltoNetworks/SkilletBuilder/blob/master/skeleton_yaml/meta-cnc-skeleton.conf]

 Building and Testing with PanHandler

Building and Testing with PanHandler

Since panHandler supports all skillet types and supports the SkilletBuilder tools, it is recommended for skillet design,
build, and test.

For first time panHandler users, reference the panHandler Quickstart Guide [https://live.paloaltonetworks.com/t5/Skillet-Tools/Install-and-Get-Started-With-Panhandler/ta-p/307916] in the Live Skillet District.

Loading the Master or Develop Versions

PanHandler runs in a Docker container, the master build tagged as ‘latest’.

There is also a develop branch with new features and updates. Although not the recommended release, some users may
want to work with develop and explore new features. Some skillets being developed may also be dependent on newer features.

Checking your Current Version

You can check your panHandler version on the Welcome page. The bottom center will show the version. You will either see
a version number or DEV if running a develop version.

Under the version is a notification message showing if you have the most recent version of PanHandler.

Updating or Running the Dev Version

This script will install or update to the latest ‘dev’ image for Panhandler. This is recommended for developers
or power-users who understand this code may be unstable and not all features may work all the time.

curl -s -k -L http://bit.ly/34kXVEn | bash

Updating or Running the Master Version

This script will install or update to the latest ‘master’ image for Panhandler. This is the version used
by users as the official version.

curl -s -k -L http://bit.ly/2xui5gM | bash

You can toggle between the two versions by running one of the curl commands

When switching between dev and latest clear the cache with:

http://localhost:9999/clear_cache

Pruning Images

Over time you may accumulate panHandler image files especially if moving between develop and master versions.

You can view the images with:

docker images

If you see multiple panHandler images you can recover disk space using:

docker image prune -a

This will remove all unused images.

To remove all unused containers, networks, images (both dangling and unreferenced), and optionally, volumes:

docker system prune

Playing Skillets from the Repo Detail Page

Instead of going back and forth between the repo detail and collections page, you can run skillets from the repo Detail page.

[image: ../_images/panhandler_repo_detail.png]

	click Update to Latest to import the latest repo changes

	check that your updates were imported reviewing messages in the Latest Updates section

	play the skillet by clicking the label in the Metadata files section

This allows you to refresh and play all from a single page.

Using Environments to Switch between Devices

Instead of entering in the target IP address, user and password information when playing a skillet you can create
panHandler environments for each target devices. This is especially useful if you are switching between a NGFW
and Panorama or have multiple lab or cloud devices for test.

Checkout the panHandler Environment documentation [https://panhandler.readthedocs.io/en/master/environments.html#] for more details about configuring and using Environments.

Testing with the SkilletBuilder Tools

Various Skillet Builder Tools allow for testing and debug. Import into panHandler and look for the Skillet Builder
collection.

Key test tools include:

	Skillet Test Tool to load yaml-based skillets to a device without Github interactions

	Configuration Explorer to look at configuration elements based on XPath

Checking Variable Values with Context

Choose View Context from the top right pulldown in panHandler.

The output will be a current list of variable names and the current value cached in panHandler. This is useful to
check variable values especially when testing logic conditionals.

Using Template Skillets to View Values

When creating workflows or wanting to see how panHandler handles values, you can create a simple template skillet for
testing.

Variables can be added into the template text file as {{ variable }} and when rendered, the screen output will show
any text include the variable values.

This can also be used to help format any messaging outputs that use variables.

Using Local Variables to Test Workflow Logic

In workflow development you may be using a value from a validation, panos, rest or other skillet as input to another skillet.
This second skillet may have conditionals based on the output from the first skillet.

To manually create a pass/fail or true/false condition you can temporarily add a type_hint = text variable to the second
skillet. When that skillet is played you will see the passed value in the web form and can then edit that value when
playing the skillet.

This alleviates the need to constantly update the queried device with different configurations in order to test the workflow
and associated logic conditions.

 Building and Testing with Appetizer

Building and Testing with Appetizer

Quickstart

Appetizer is a docker image the builds a simple GUI driven web app for any git repository
that contains skillets. This makes is very easy to try out automation tools that use skillets.

docker run -it --rm -p 9000:8080 -e 'REPO=https://github.com/PaloAltoNetworks/SkilletBuilder.git' \
 -e 'BRANCH=develop' \
 --name "Skillet Builder" registry.gitlab.com/panw-gse/as/appetizer

In the above example, the local port 9000 will be used to access the generated Skillet Builder application.

 Building and Testing with SLI

Building and Testing with SLI

Install SLI

In a terminal/bash shell enter the following to create a virtual python environment and install SLI.

> mkdir {directory name of your choice}
> cd {directory from step above}
> python3 -m venv ./venv (Create the venv)
> source ./venv/bin/activate (Activate the venv)
> pip install sli

Use SLI to Perform a Configuration Difference

SLI can extract the difference between two configuration files.
See instructions above for installing SLI locally on your machine.

To get the difference between two configs in XML format, run the following command:

> sli diff -of xml

After entering this command, you will be prompted to enter your NGFW information. After entering the correct
information you will receive the configuration differences between the candidate and running configs output as
XML (seen below).

[image: ../_images/sli_config_diff.png]

You can utilize these XML snippets to create a skillet. Copy this XML snippet somewhere you can easily access it.

Refer to the GitHub page in order to create a new repository and clone it to your local machine.
Start with a blank .skillet.yaml file in your text editor/IDE.

Use this basic template to begin populating the file with skillet content:

name: New_Skillet
label: Tutorial Skillet
description: Skillet template for use with SLI
type: panos
labels:
 collection: Unknown
variables:
- name:
 description:
 type_hint:
 default: ''
snippets:
- name:
 xpath:
 element:

For this basic example we will use the edl snippet from the instructions and screenshot above.
Add the content for the name, xpath, and element of the snippet.

- name: external-list-820753
 xpath: /config/devices/entry[@name="localhost.localdomain"]/vsys/entry[@name="vsys1"]
 element: |-
 <external-list>
 <entry name="edl_name">
 <type>
 <ip>
 <recurring>
 <five-minute/>
 </recurring>
 <url>http://someurl.com</url>
 <description>edl_description</description>
 </ip>
 </type>
 </entry>
 </external-list>
 cmd: set
 file: ''
 template_title: ''

For more customization, you can also add variables. For this example we will add a variable to change the name of the
edl. Enter the following into the variables section:

variables:
- name: edl_name
 description: name of edl
 type_hint: text
 default: ''

Next, modify the snippet to use Jinja variable formatting and replace the current edl_name with the variable.
It is important to keep the spacing between the curly brackets and the variable name.

- name: external-list-820753
 xpath: /config/devices/entry[@name="localhost.localdomain"]/vsys/entry[@name="vsys1"]
 element: |-
 <external-list>
 <entry name="{{ edl_name }}">
 <type>
 <ip>
 <recurring>
 <five-minute/>
 </recurring>
 <url>http://someurl.com</url>
 <description>edl_description</description>
 </ip>
 </type>
 </entry>
 </external-list>
 cmd: set
 file: ''
 template_title: ''

Here you can add other desired variables and snippets. You can create a variable for the url and description.

- name: external-list-820753
 xpath: /config/devices/entry[@name="localhost.localdomain"]/vsys/entry[@name="vsys1"]
 element: |-
 <external-list>
 <entry name="{{ edl_name }}">
 <type>
 <ip>
 <recurring>
 <five-minute/>
 </recurring>
 <url>{{ edl_url }}</url>
 <description>{{ edl_description }}</description>
 </ip>
 </type>
 </entry>
 </external-list>
 cmd: set
 file: ''
 template_title: ''

Don’t forget to add the variables in the variables section.

variables:
- name: edl_description
 description: edl_description
 type_hint: text
 default: ''
- name: edl_url
 description: edl_url
 type_hint: text
 default: ''
- name: edl_name
 description: edl_name
 type_hint: text
 default: ''

Play a Skillet with SLI

Clone your skillet in the SLI directory you are currently working in.

> git clone {skillet repo}

To load and view the skillets available in the current working directory, type the following:

> sli load

You can also specify a skillet directory by:

> sli load -sd {skillet directory}

To play the skillet, type the following:

> sli configure --name {name of skillet}

To specify a directory when playing the skillet enter:

> sli configure -sd {skillet directory} --name {name of skillet}

After entering this command, you will be prompted to enter your NGFW information and the values to the variables
in the skillet.

[image: ../_images/sli_NGFW_info.png]

Note

If tag_color is a variable in the skillet, you must enter the color number (color1, color2, etc.) and NOT
the actual color, otherwise the skillet will not work. Please refer to the color mappings table in the configuration
tutorial.

Store User Context in SLI

SLI has a built-in context manager that allows data to be stored between commands.

As you play a skillet for the first time, use ‘-uc’ in the command to store the context from the skillet.

> sli configure --name {name of skillet} -uc

To view the context stored in SLI type:

> sli show_context

To clear the context stored in SLI type:

> sli clear_context

For more in depth instructions on the context manager refer to the SLI Documentation. [https://pypi.org/project/sli/]

Help with SLI

In a terminal/bash shell type the following to list all available actions for SLI:

> sli --help

[image: ../_images/sli_help.png]

 Configuration

Configuration

Overview

This tutorial is designed to help the user build an introductory configuration skillet. The tutorial will showcase
PanHandler, along with several SkilletBuilder tools that assist the user in creating, editing, and testing skillets.
The configuration tutorial will create a simple configuration including:

	An IP External Dynamic List (EDL) object

	A Tag object

	Security rules (Inbound and Outbound) referencing the EDL and tag objects

The video provides an end-to-end perspective for building a configuration skillet as a complement
to the documentation content.

 Set Commands

Set Commands

Overview

This tutorial is designed to help the user get familiar with using set commands to bring up and apply basic configs to their NGFW. By the end of this tutorial the user should be able to alter their firewall manually through the Command Line Interface (CLI) with set commands. All set/op commands that can be entered in the CLI manually can also be transformed into an automation playlist in the form of a skillet. This allows the user to run a series of set commands to easily configure their NGFW with just the click of a button. The configuration tutorial will create a simple configuration including:

	An IP External Dynamic List (EDL) object

	A tag object

	Security rules (Inbound and Outbound) referencing the EDL and tag objects

This Basic Config with Set Commands tutorial will show the user how to:

	Access and configure the Next Generation Firewall (NGFW) through the web UI and CLI

	Capture configuration differences made on the NGFW into set commands and automation skillets

	Learn how to use Panhandler tooling

	Learn how to use the Skillet Line Interface (SLI) tool on the CLI

	Learn the basics of using GitHub and repositories

The video below provides an end-to-end perspective for building a configuration skillet through PanHandler and can be
used as a complement to the documentation content.

 Validation

Validation

Overview

This tutorial walks through the creation and testing of a validation skillet that will:

	Check if NTP servers are configured

	Check is password complexity is enabled with a minimum-length >= 12 characters

	Check if all configured URL-filtering profiles are blocking the malware category

	Check if all ‘allow’ security rules are configured with a security profile or group

Unlike configuration skillets that can start with the difference between two configuration files, validation
skillets are more open-ended. Therefore builders need to learn the mechanics of validation skillets to apply to their
own use cases. This includes capturing outputs as variables and using them in boolean tests.

The video provides an end-to-end perspective for building a validation skillet as a complement
to the documentation content.

 Workflow

Workflow

Overview

This tutorial is aimed at novice skillet developers who want to build a sample workflow skillet.
Workflows are a simple way to tie together multiple skillets into one chain of execution.
This solution type is preferred in these specific use cases:

	Joining together skillets of multiple types

	Breaking the automation into many steps with human input in the middle

This workflow tutorial considers both of these use cases when developing a solution
that chains a validation skillet, a configuration skillet, and a template skillet into
one cohesive workflow solution.

 Playlist Includes

Playlist Includes

Overview

This tutorial is geared toward skillet developers that want to be able to reuse pieces of a skillet multiple times.
This can be done by creating a playlist with skillet includes. Skillet includes allow snippets from other skillets
to be referenced and included in the playlist. This solution is recommended for the following use cases:

	Creating several skillets that are similar, but have minor content differences

	Recreating skillets that already exist, but with minor tweaks

	Keeping a skillet up to date with latest content releases

	Pulling together content from multiple skillets

This Playlist Includes tutorial highlights the first three use cases. The focus of this tutorial will show how the
playlist model for IronSkillet works. This uses a submodule called ironskillet-components [https://github.com/PaloAltoNetworks/ironskillet-components]
that is used to build
several playlists that contain different content groups of the IronSkillet configuration. By using a submodule, it
is easy to update the sub-skillets in one place, and have the playlists pull the latest snippets available. To make
terms more clear in this tutorial, the skillets that the playlist include snippets come from will be called sub-skillets.
This means we will be constructing a playlists containing snippets from sub-skillets.

The final repository built from this tutorial can be viewed here [https://github.com/madelinemccombe/Playlist_Includes_Tutorial].

 Example Skillet

Example Skillet

In this example, we will create a skillet that allows the user to customize a single variable.

XML Fragment

First, we’ll extract the parts of the configuration that comprise this ‘unit’ of configuration changes (a skillet).
For example, this portion of the configuration describes the log-settings we would like to modify:

<system>
 <match-list>
 <entry name="dhcp-log-match">
 <send-syslog>
 <member>mgmt-interface</member>
 </send-syslog>
 <filter>(eventid eq lease-start)</filter>
 </entry>
 </match-list>
</system>
<syslog>
 <entry name="mgmt-interface">
 <server>
 <entry name="mgmt-intf">
 <transport>UDP</transport>
 <port>514</port>
 <format>BSD</format>
 <server>{{ MGMT_IP }}</server>
 <facility>LOG_USER</facility>
 </entry>
 </server>
 </entry>
</syslog>

Notice here we have defined one variable: MGMT_IP. This will allow the user to insert their own management ip when
deploying.

.meta-cnc file

name: example_log_setting
label: Log Setting Example
description: Example log setting to configure syslog
type: panos
extends:

labels:
 service_type: userid

variables:
 - name: MGMT_IP
 description: NGFW management IP address
 default: 192.168.0.1
 type_hint: ip_address

snippets:
 - name: log_settings
 cmd: set
 xpath: /config/shared/log-settings
 file: log_settings.xml

In this file, we give some basic information about what this skillet will do, what configuration bits will be applied,
and what variables the user can customize. Notice in the ‘variables’ section, we specify a variable entry with a ‘name’
that matches the variable defined in the XML fragment. The ‘snippets’ section will inform Panhandler where in the
configuration this fragment should be inserted (xpath) and where to find the fragment (file).

Rendered Form

This .meta-cnc.yaml will produce the following web form in Panhandler:

[image: ../_images/ph-example-skillet.png]

 Example Validation Skillet

Example Validation Skillet

This is a very basic example showing validate a portion of a PAN-OS configuration. Often times, you need to check
for specific values or apply some simple logic to a portion of the config to determine if it is considered
compliant or not. Skillets of type pan_validation allow you to do just that.

By default, Panhandler will always supply a variable called ‘config’ that contains the NGFW running config. The parse
cmd can be used to pull out and capture specific parts of that config. In this example, we use an advanced xpath query
to return a variable containing a list of all zone names configured in the running config. Another advanced xpath is
also used to find an ethernet interface with a specific IP Address. That interface is converted to an object using
capture_object.

The snippets with a cmd type of validate is where the actual compliance checks are performed. The test attribute
will be evaluated as a jinja boolean expression. True values are considered to have ‘passed’ this test.

.meta-cnc.yaml

#
Example Validation Skillet
#
name: example-validate-with-xpath-capture
label: Example of how to use xpath queries to capture specific items of interest.

description: |
 This example Skillet shows how to parse and validate a config using xpath syntax. This example checks the
 configured zones to ensure we do not have one with the attribute name equal to 'does-not-exist'

type: pan_validation
labels:
 collection:
 - Example Skillets
 - Validation

variables:
 # this will allow the user to input a zone name to test
 - name: zone_to_test
 description: Name of the Zone to test for absence
 default: does-not-exist
 type_hint: text
 # as well as an IP address to search for as well
 - name: ip_to_find
 description: IP Address to locate
 default: 10.10.10.10/24
 type_hint: ip_address

snippets:
 - name: parse config variable and capture outputs
 cmd: parse
 variable: config
 outputs:
 # create a variable named 'zone_names' which will be a list of the attribute 'names' from each zone
 # note the use of '//' to select all zones
 # the '@name' will return only the value of the attribute 'name' from each 'entry'
 - name: zone_names
 capture_pattern: /config/devices/entry/vsys/entry/zone//entry/@name
 # note here we can combine an advanced xpath query with 'capture_object'. This will capture
 # the full interface definition from the interface that contains the 'ip_to_find' value
 - name: interface_with_ip
 capture_object: /config/devices/entry/network/interface/ethernet//entry/layer3/ip/entry[@name="{{ ip_to_find }}"]/../..

 # simple test using a jinja expression to verify the 'zone_to_test' variable is not in the 'zone_names' test
 - name: ensure_desired_zone_absent_from_list
 # pan_validation skillet have a default cmd of 'validate'
 cmd: validate
 # note here that you can use jinja variable interpolation just about anywhere
 label: Ensures the {{ zone_to_test }} zone is not configured
 test: zone_test_test not in zone_names
 fail_message: |
 This fail message contains a variable, which is useful for debugging and testing.
 captured values were: {{ zone_names | tojson() }} and {{ interface_with_ip | default('none')| tojson() }}
 # documentation link helps give the user some context about why this test failed or how to manually remediate
 documentation_link: https://github.com/PaloAltoNetworks/skilletlib/blob/develop/docs/source/examples.rst

 More Example Skillets

More Example Skillets

Example Skillets by Type

Example PAN-OS Skillet

Example REST Skillet

Example REST Skillet with Output Capturing

Example Python Skillet

Example Terraform Skillet

Example Validation Skillet

Example Skillets by Feature

Example Complex Validation Skillet

Example Skillet with When Conditionals

Example PAN-OS with Output Capturing

External Skillet Repositories

Here is a couple of Git repositories that contain numerous example Skillets.

Palo Alto Networks Skillets [https://github.com/paloaltonetworks/skillets].

SkilletLib is a library for parsing and executing Skillets in third party applications and tooling. The
SkilletLib repository [https://github.com/PaloAltoNetworks/skilletlib/tree/master/example_skillets] also has
many useful examples.

Palo Alto Networks World Wide CE team has a great collection of Skillets [https://github.com/wwce/] on Github.

Many other Skillets may be found on Github as well using the Skillets topic [https://github.com/topics/skillets].

 Index

Index

 Skillets Defined

Skillets Defined

The heart of Panhandler is the .meta-cnc.yaml file. This allows a set of configuration snippets, known as a skillet,
to be shared and consumed as a single unit. For example, to configure a default security profile you may need to
configure multiple different parts of the PAN-OS configuration. Panhandler allows you to group those different ‘pieces’
and share them among different devices as a single unit. Often times these configuration bits
(affectionately called ‘skillets’) need slight customization before deployment to a new device. The .meta-cnc.yaml
file provides a means to templatize these configurations and present a list of customization points, or variables,
to the end user or consumer.

IronSkillet

The very first, and most well known, Skillet is IronSkillet [https://github.com/PaloAltoNetworks/iron-skillet]. This
was developed as a way to share best practice Day One configurations in an easy to deploy manner without requiring
‘a million clicks’.

Much more information about IronSkilet can be found on
Readthedocs [https://iron-skillet.readthedocs.io/en/docs_master/].

Basic concepts

In order to add multiple ‘bits’ of configuration to a device, we need to know the following things:

	XML Configuration fragment with optional variables defined in jinja2 format

	xpath where this xml fragment should be inserted into the candidate configuration

	the order in which these XML fragments must be inserted

	a list of all variables that require user input

	target version requirements. For example: PAN-OS 8.0 or higher

This is all accomplished by adding multiple files each containing an XML configuration fragment and a .meta-cnc.yaml
file that describes the load order, variables, target requirements, etc.

YAML syntax

Each skillet is structured as a series of files in a single directory. This directory may contain
a number of template files (XML, YAML, JSON, etc) and a .meta-cnc.yaml file. Note the following:

	A .meta-cnc.yaml file that is formatted with using YAML with the following format:

name: config_set_id
label: human readable text string
description: human readable long form text describing this Skillet

labels:
 collection:
 - Example Skillets

variables:
 - name: INF_NAME
 description: Interface Name
 default: Ethernet1/1
 type_hint: text

snippets:
 - xpath: some/xpath/value/here
 name: config_set_knickname
 file: filename of xml snippet to load that should exist in this directory

	Multiple configuration files. Each should contain a valid template fragment and may use jinja2 variables.
These templates may be XML, JSON, YAML, Text, etc. For PAN-OS devices, these are XML fragments from specific stanzas
of the PAN-OS device configuration tree.

Metadata details

Each .meta-cnc.yaml file must contain the following top-level attributes:

	name: unique name of this Skillet

	label: Human readable label that will be displayed in the Panhandler UI

	description: Short description to give specific information about what this Skillet does

	type: The type of skillet. This can be ‘panos’, ‘panorama’, ‘rest’, or others.

	variables: Described in detail below

	snippets: a list od dicts. The required attributes vary according to Skillet tupe

Optional top level attributes:

	depends: List of dicts containing repository urls and branches that this skillet depends on

	labels: YAML dict of optional Skillet configuration information. For example - collection labels

Note

Each Metadata file type has it’s own format for the ‘snippets’ section. file and xpath are only used in
panos and panorama types. Other types such as template or rest may have a different format.

Skillet Collections

Each Skillet should belong to at least one ‘Collection’. Collections are used to group like skillets. SKillets
with no collection label will be placed in the ‘Unknown’ Collection.

To configure one or more collections for your Skillet, add a collection attribute to the ‘labels’ dictionary.

labels:
 collection:
 - Example Skillets
 - Another Collection
 - Yet another Collection

Snippet details per Metadata type

Required fields for each metadata type is listed below:

	
	panos, panorama, panorama-gpcs
	
	name - name of this snippet

	cmd - operation to perform. Default is ‘set’. Any valid PAN-OS API Command is accepted (set, edit, override, get, show, etc)

	xpath - XPath where this fragment belongs

	file - path to the XML fragment to load and parse

	element - inline XML fragment to load and parse. Can be used in leu of a separate ‘file’ field

See Example here: Example PAN-OS Skillet

	
	pan_validation
	
	name - name of the validation test to perform

	cmd - validate, validate_xml, noop, or parse. Default is validate

	test - Boolean test to perform using jinja expressions

See Example here: Example Validation Skillet

	
	template
	
	name - name of this snippet

	file - path to the jinja2 template to load and parse

	template_title - Optional title to include in rendered output

	
	terraform
	
	None - snippets are not used for terraform

See Example here: Example Terraform Skillet

	
	rest
	
	name - unique name for this rest operation

	path - REST URL path component path: http://host/api/?type=keygen&user={{ username }}&password={{ password }}

	operation - type of REST operation (GET, POST, DELETE, etc)

	
	payload - path to a jinja2 template to load and parse to be send as POSTed payload
	
Note

For x-www-form-urlencded this must be a json dictionary

	
	headers - a dict of key value pairs to add to the http headers
	
Note

for example: Content-Type: application/json

See Example here: Example REST Skillet and here: Example REST Skillet with Output Capturing

	
	python3
	
	name - name of the script to execute

	file - relative path to the python script to execute

	input_type - Optional type of input required for this script. Valid options are ‘cli’ or ‘env’.
This will determine how user input variables will be passed into
into the script. The default is ‘cli’ and will pass variables as long form arguments to the script in the form
of –username=user_input where username is the name of the variable defined in the variables section and
user_input is the value entered for that variable from the user. The other option, ‘env’ use cause all
defined variables to be set in the environment of the python process.

See Example here: Example Python Skillet

Defining Variables for User input

Each skillet can define multiple variables that will be interpolated using the Jinja2 templating language. Each
variable defined in the variables list should define the following:

	name: The name of the variable found in the skillets. For example:

{{ name }}

	description: A brief description of the variable and it’s purpose in the configuration. This will be rendered as
the field label in the UI.

	default: A valid default value which will be used if no value is provided by the user.

	type_hint: Used to constrain the types of values accepted. May be implemented by additional third party tools.
Examples are text, text_field, ip_address, password, dropdown, and checkbox.

	force_default: The UI will be pre-populated with a value from the loaded environment or with a previously
entered value unless this value is set to True. The default is False. Setting to True will ensure the default
value will always be rendered in the panhandler UI.

	required: Determines if a value is required for this field. The default is False.

	help_text: Optional attribute that will be displayed immediately under the field. This is useful for giving
extra information to the user about the purpose of a field.

Note

The variable name must not contain special characters such as ‘-‘ or ‘*’ or spaces. Variable names can be any
length and can consist of uppercase and lowercase letters (A-Z , a-z), digits (0-9), and the underscore
character (_). An additional restriction is that, although a variable name can contain digits, the first
character of a variable name cannot be a digit.

Variable Examples:

Here is an example variable declaration.

- name: FW_NAME
 description: Firewall hostname
 default: panos-01
 type_hint: text
 help_text: Hostname for this firewall.
 allow_special_characters: false
 attributes:
 min: 6
 max: 256

See Variables for a complete reference of all available type_hints.

Hints

Ensuring all variables are defined

When working with a large amount of configuration temlates, it’s easy to miss a variable definition. Use this one-liner
to find them all.

cd into a skillet dir and run this to find all configured variables:

grep -r '{{' . | cut -d'{' -f3 | awk '{ print $1 }' | sort -u

Of, if you have perl available, the following may also catch any configuration commands that may have
more than one variable defined:

grep -r '{{' . | perl -pne 'chomp(); s/.*?{{ (.*?) }}/$1\n/g;' | sort -u

YAML Syntax

YAML is notoriously finicky about whitespace and formatting. While it’s a relatively simple structure and easy to learn,
it can often also be frustrating to work with, especially for large files. A good reference to use to check your
YAML syntax is the YAML Lint site [http://www.yamllint.com/].

Jinja Whitespace control

Care must usually be taken to ensure no extra whitespace creeps into your templates due to Jinja looping
constructs or control characters. For example, consider the following fragment:

<dns-servers>
{% for member in CLIENT_DNS_SUFFIX %}
 <member>{{ member }}</member>
{% endfor %}
</dns-servers>

This fragment will result in blank lines being inserted where the ‘for’ and ‘endfor’ control tags are placed. To
ensure this does not happen and to prevent any unintentioal whitespace, you can use jinja whitespace control like
so:

<dns-servers>
{%- for member in CLIENT_DNS_SUFFIX %}
 <member>{{ member }}</member>
{%- endfor %}
</dns-servers>

Note

Note the ‘-‘ after the leading ‘{%’. This instructs jinja to remove these blank lines in the resulting
parsed output template.

 Example Complex Validation Skillet

Example Complex Validation Skillet

This is a more complex example showing how to validate a portion of a PAN-OS configuration. Often times, you need to
check for specific values or apply some simple logic to a portion of the config to determine if it is considered
compliant or not. Skillets of type pan_validation allow you to do just that.

By default, Panhandler will always supply a variable called ‘config’ that contains the NGFW running config. The parse
cmd can be used to pull out and capture specific parts of that config. In this example, we use an advanced xpath query
to return a variable containing a list of all file-blocking profiles that have either the desired ‘file type’ or ‘any’
in the member list. We then use the ‘filter_items’ attribute to further filter the list to only include those items
that have an ‘action’ of block. In this way, you can find objects in the configuration without knowing the full
XPATH.

The snippets with a cmd type of validate is where the actual compliance checks are performed. The test attribute
will be evaluated as a jinja boolean expression. True values are considered to have ‘passed’ this test.

name: complex_validation_323E38BD-D5E0-4ED2-8F39-3AE283B899AD

label: Complex Validation Example - File Blocking Profiles

description: |
 This skillet checks the running config to ensure at least one file-blocking profile exists with the desired
 file type and has an action of 'block'.

type: pan_validation

labels:
 collection:
 - Example Skillets

variables:
 - name: file_type
 description: File Type to Check
 default: torrent
 type_hint: text
 help_text: Which type of file to check to ensure it is being blocked correctly

snippets:
 - name: profile_objects
 cmd: parse
 variable: config
 outputs:
 # This example uses a complex XPATH query to find a list of all file-blocking profile entries that have
 # either the desired file-type as a member or 'any'
 - name: fb_profiles
 capture_list: |
 /config/devices/entry[@name='localhost.localdomain']/vsys/entry[@name='vsys1']/profiles/file-blocking//
 entry/rules/entry/file-type/member[text()="{{ file_type }}" or text()="any"]/../..
 # This further filters the list to *only* include those items that have an action of 'block'
 filter_items: item | element_value('entry.action') == 'block'

 - name: file_blocking_check
 label: Ensure at least one file blocking profile is blocking {{ file_type }}
 test: |
 (
 fb_profiles | length
)
 documentation_link: https://ironscotch.readthedocs.io/en/docs_dev/viz_guide_panos.html#object-security-profiles-antivirus-blocking

 Example PAN-OS with Output Capturing

Example PAN-OS with Output Capturing

This is a very basic example showing how to ‘get’ a portion of the configuration and capture some returned data into
context variables. These variables are then accessible by subsequent skillets. A common practice is to
build a simple workflow where the first skillet ‘gets’ information from a device, then a template skillet
displays that data using a jinja rendered.

.meta-cnc.yaml

name: example-panos-cmd-get
label: Example of how use the 'get' command for PAN-OS

description: |
 This example Skillet shows how to retrieve information from a PAN-OS device using the 'get' command type. This example
 uses the 'get' command type to retrieve some data, then uses a couple of different capture types to parse out
 different bits from the returned data.

type: panos
labels:
 collection:
 - Example Skillets

snippets:
 - name: system_object
 cmd: get
 xpath: /config/devices/entry[@name="localhost.localdomain"]/deviceconfig/system
 outputs:
 # You always need to specify what you want to capture from the returned data
 # Using 'capture_object' you can convert the returned XML data (default output_type for panos) into a
 # an object that we can manipulate with Jinja later if desired
 - name: results_as_object
 # the '.' capture pattern will convert the full output into an object
 capture_object: .
 # the 'capture_value' attribute will only pull out a specific part of the returned data into a variable.
 # This is good if you only need a smaller part of the returned data as a stand-alone variable
 - name: timezone
 capture_value: timezone
 # 'capture_object' will take an XPath query and construct an object based on the XML returned from the query
 - name: dns_servers_object
 capture_object: dns-setting
 # 'capture_value' also takes an XPath query, but will return the value from the xpath query
 - name: primary_dns_server
 capture_value: dns-setting/servers/primary

 - name: system_xml
 cmd: get
 xpath: /config/devices/entry[@name="localhost.localdomain"]/deviceconfig/system
 # If you would like to have the raw output from the cmd, you can set the 'output_type' to text. This will
 # create a variable in the context named 'results_as_str' with a value containing the full XML output
 # from the 'get' command
 output_type: text
 outputs:
 - name: results_as_str

 Example PAN-OS Skillet

Example PAN-OS Skillet

This is a very basic example showing how to ‘set’ a templatized portion of the configuration. The user will be
prompted two input values. Each one will be interpolated into the ‘element’ and ‘set’ into the NGFW configuration.

.meta-cnc.yaml

name: mySkillet
label: Sets the Login Banner
description: |
 Simple Skillet to demonstrate how to use the 'set' command type for panos skillets

type: panos

labels:
 collection:
 - Example Skillets

variables:

 - name: hostname
 description: Firewall hostname
 default: next-gen-firewall-01
 type_hint: text

 - name: firewall_env
 description: Firewall Environment
 default: develop
 type_hint: dropdown
 dd_list:
 - key: Develop
 value: Develop
 - key: Production
 value: Production

snippets:
 - name: login-banner-226180
 cmd: set
 xpath: /config/devices/entry[@name="localhost.localdomain"]/deviceconfig/system
 element: |-
 <login-banner> Be Aware {{ hostname }} is in {{ firewall_env }}. </login-banner>

XML Payload

PAN-OS Skillets that load smaller bits of XML configuration into the device, can contain those elements ‘inline’
using the ‘element’ attribute. Larger chunks of XML can also be stored separately on the filesystem using the ‘file’
attribute. The value of the ‘file’ attribute should be a relative path to the file to read and load. In both cases,
jinja variable interpolation is done before being sent to the NGFW.

Snippet Details

The ‘snippets’ section contains all the skillet type specific configuration. Here are the details of each attribute
for ‘panos’ type skillets:

	name - name of this snippet. Useful for debugging and determining which snippets were executed successfully.

	
	cmd - the command to execute. Valid options are
	
	
	op - performs an xml encoded op command
	
	Requires the ‘cmd_str’ attribute

	
	set - performs a ‘set’
	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes

	
	edit - performs an ‘edit’
	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes

	
	override - performs an ‘override’
	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes

	
	move - performs a ‘move’
	
	Requires the ‘where’ attribute

	
	rename - performs a ‘rename’
	
	Requires the ‘new_name’ attribute

	
	clone - performs a ‘clone’
	
	Requires the ‘new_name’ and ‘xpath_from’ attribute

	
	delete - performs a ‘delete’
	
	Requires the ‘xpath’ attribute

	
	show - performs a ‘show’
	
	Requires the ‘xpath’ attribute

	
	get - performs a ‘get’
	
	Requires the ‘xpath’ attribute

	
	cli - performs ‘cli’ command. ex: show system info
	
	Requires the ‘cmd_str’ attribute

	
	validate - performs a validate
	
	Requires the ‘test’ attribute

	
	validate_xml - validates an xml path with a loaded xml snippet
	
	Requires ‘xpath’ and either ‘file’ or ‘element’ attributes

	
	parse - parses a variable using output capturing
	
	Requires ‘variable’ and ‘outputs’ attributes

 Example Python Skillet

Example Python Skillet

This Skillet will launch a python script and capture variables from it’s output. This python script requires it’s
input form the user to be included in the OS Environment rather than on the CLI, so the ‘input_type’ attribute has
been set to ‘env’ rather than the default ‘cli’.

This script also returns JSON encoded structured data. We can use jsonpath_ng [https://github.com/h2non/jsonpath-ng#jsonpath-syntax] expressions to query and capture
specific variables from the output. For more inforation on JSON Path expression, see the jsonpath_ng [https://github.com/h2non/jsonpath-ng#jsonpath-syntax] library.

.meta-cnc.yaml

name: python3_env_input_example

label: Example Python Script Argument Parsing

description: |
 This skillet demonstrates a simple Python script in action with Env based input arguments and list handling.

type: python3

labels:
 collection:
 - Example Skillets

variables:
 - name: USERNAME
 description: Username
 default: admin
 type_hint: text
 - name: PASSWORD
 description: Password
 default:
 type_hint: password

snippets:
 - name: script
 file: input_from_env.py
 input_type: env
 output_type: json
 outputs:
 - name: captured_username
 capture_value: 'output_example.captured_username'
 - name: captured_secret
 capture_value: 'output_example.captured_secret'

Snippet Details

The ‘snippets’ section contains all the skillet type specific configuration. Here are the details of each attribute
for ‘python3’ type skillets:

	name - name of this snippet. Useful for debugging and determining which snippets were executed successfully.

	
	file - relative path to the Python script to execute
	
	for example: file: ../run_reticulating_splines.py

	
	input_type - how input variables from the user will be passed to the script. Valid options are:
	
	env - All variables from the ‘variables’ section will be set in the OS Environment

	
	cli - All variables will be passed in via long form command line arguments
	
	for example $: ./run_reticulating_splines.py –some_argument=”my-hostname” –another_var=”123”

 Example REST Skillet

Example REST Skillet

Here is a basic skillet of type ‘rest’. This skillet will query the Palo Alto Networks Licensing API to track
usage of a given authcode. This skillet demonstrates several important aspects of the rest type.

.meta-cnc.yaml

name: track_license_usage
Label is what will appear in the panhandler UI
label: Track PAN-OS License Usage

description: |
 This skillet demonstrates a simple REST api call to track license usage for a given authcode

type of skillet (panos, panorama, panorama-gpcs, python3, rest, template, or terraform)
type: rest

Labels allow grouping and type specific options and are generally only used in advanced cases
the collection label will determine to which skillet collection this belongs
labels:
 collection: Rest Skillets

this example only requires two bits of information from the operator, the licensing api_key and the authcode
to check
variables:
 - name: api_key
 description: Licensing API Key
 default: 0000-0000-0000-0000-0000
 type_hint: text
 - name: authcode
 description: Auth Code to Check
 default: ABC123
 type_hint: text

The snippets section is required and is a list of REST operators to perform
snippets:
 - name: track
 path: https://api.paloaltonetworks.com/api/license/get
 operation: post
 payload: payload.j2
 headers:
 apiKey: '{{ api_key }}'
 Content-Type: application/x-www-form-urlencoded

Example Payload

Here are the contents of the payload.j2 file

{
"authcode": "{{ authcode }}"
}

Snippet Details

The ‘snippets’ section contains all the type specific configuration. Here are the details of each attribute:

	name - name of the rest operation. This will group any captured outputs later

	
	path - this is the full URL to query - You may include variables in this if desired
	
	for example: path: https://{{ host }}/api/query={{ query_value }}

	operation - the REST type operation to perform, in this case we need to perform a POST

	payload - the relative path to a file to load and parse. If your headers include a ‘Content-Type’ and that type
is ‘application/x-www-form-urlencoded’ or ‘application/json’ this file will be parsed using the ‘json’ library
and passed to the ‘requests.post’ method as a ‘data’ attribute. In most cases, this file will be a simple
json dictionary of key value pairs.

	headers - this is a dictionary of attributes that will be added to the HTTP headers for the request. Each ‘value’
of the key value pair will be variable interpolated. In this case, we need to pass the ‘api_key’ variable captured
from the user.

 Example REST Skillet with Output Capturing

Example REST Skillet with Output Capturing

Here is a basic skillet of type ‘rest’. This skillet will query the Palo Alto Networks Licensing API to track
usage of a given authorization code. This skillet demonstrates several important aspects of the rest type. This example also
demonstrates how to parse the output and capture variables for re-use in another skillet.

.meta-cnc.yaml

name: generate_api_key
label: Generate PAN-OS API Key
type: rest

description: |
 This skillet demonstrates a simple REST api call to a PAN-OS NGFW to generate a new API Key

labels:
 collection: Rest Skillets

variables:
 - name: TARGET_IP
 description: Host
 default: 127.0.0.1
 type_hint: fqdn_or_ip

 - name: TARGET_PORT
 description: Port
 default: 443
 type_hint: number

 - name: TARGET_USERNAME
 description: Username
 default: admin
 type_hint: text

 - name: TARGET_PASSWORD
 description: Password
 default: admin
 type_hint: password

snippets:
 - name: key_gen
 path: https://{{ TARGET_IP }}:{{ TARGET_PORT }}/api/?type=keygen&user={{ TARGET_USERNAME }}&password={{ TARGET_PASSWORD }}
 # this should output capturing which will set a variable called 'api_key' in the workflow, which can be referenced
 # in a skillet called after this one, any variable with a name called api_key will be prepopulated with the
 # value that is captured from the output of this xml api command
 operation: get
 output_type: xml
 outputs:
 - name: api_key
 capture_pattern: result/key

Section Details

The ‘snippets’ section contains all the type specific configuration. Here are the details of each attribute:

	name - name of the rest operation. This will group any captured outputs later

	
	path - this is the full URL to query - You may include variables in this if desired
	
	for example: path: https://{{ host }}/api/query={{ query_value }}

	operation - the REST type operation to perform, in this case we need to perform a POST

	payload - the relative path to a file to load and parse. If your headers include a ‘Content-Type’ and that type
is ‘application/x-www-form-urlencoded’ or ‘application/json’ this file will be parsed using the ‘json’ library
and passed to the ‘requests.post’ method as a ‘data’ attribute. In most cases, this file will be a simple
json dictionary of key value pairs. This is not required for an operation type of ‘get’.

	headers - this is a dictionary of attributes that will be added to the HTTP headers for the request. Each ‘value’
of the key value pair will be variable interpolated. In this case, we need to pass the ‘api_key’ variable captured
from the user. This is not used in this example,

	outputs_type: This is the type of structured data that will be returned from this operation. Valid options are ‘xml’,
‘json’, and ‘base64’.

	
	outputs: A list of dictionaries, each with the following format:
	
	name: variable name that will be placed in the jinja context

	
	capture_pattern: The xpath or jsonpath expression that will be evaluated. In this case, the xpath ‘result/key’
	will return the text found at the XML Element found at this xpath.

Captured Outputs

Any skillet that is called after this one will have the variable ‘api_key’ pre-populated with the value returned
from this skillet. This allows you to chain together skillets to gather information that can be used later anywhere
jinja variable interpolation is used.

 Example Terraform Skillet

Example Terraform Skillet

This Skillet will launch a Terraform project. All user-inputs to the ‘variables’ section will be passed to terraform
as terraform variables. Therefore, the ‘variable’ names should match the terraform variable names exactly. Any
terraform ‘outputs’ will be automatically captured into the context for subsequent skillets to use.

.meta-cnc.yaml

name: azure_single_pavm

label: Azure Single PAN-OS VM-Series

description: Launch a single Single PAN-OS VM-Series in Azure.

type: terraform

labels:
 collection:
 - Example Skillets

variables:
 - name: admin_username
 description: Admin Username
 default: panhandler
 type_hint: text
 - name: admin_password
 description: Admin Password
 default:
 type_hint: password
 - name: hostname
 description: Hostname
 default: panhandler-vm-01
 type_hint: text
 - name: resource_group
 description: Resource Group
 default: panhandler-unique-value-123
 type_hint: text

Terraform Variables

In this case, our variables from the skillet definition file match the variables that terraform expects. Here is a
variables.tf file from this project:

variable "admin_username" {
 description = "PAN-OS NGFW Admin Username"
 default = "admin"
}

variable "admin_password" {
 description = "PAN-OS NGFW Admin Password"
 default = "admin"
}

variable "resource_group" {
 description = "Resource Group to use to build"
 default = "admin"
}

variable "hostname" {
 description = "Host name of the PA VM-Series"
 default = "pavm"
}

Any user input from Panhandler will be passed to terraform as a TFVAR.

Terraform Output Capturing

All terraform ‘outputs’ are automatically captured into the context. Here is a sample ‘outputs.tf’ file:

data "azurerm_public_ip" "pavm_public_ip_address_data" {
 name = "${azurerm_public_ip.pavm_public_ip.name}"
 resource_group_name = "${azurerm_virtual_machine.pavm.resource_group_name}"
}

output "pavm_public_ip_address" {
 value = "${data.azurerm_public_ip.pavm_public_ip_address_data.ip_address}"
}

This will capture a variable named ‘pavm_public_ip_address’ in the Panhandler skillet context, where it can be used to
pre-populate input fields in other skillets, or passed to other skillets via hidden variables, etc.

Snippet Details

The ‘snippets’ section contains all the type specific configuration. Terraform does not require a ‘snippet’ section
as the skillet definition file is expected to live in the project root of the terraform project.

 Example Validation Skillet

Example Validation Skillet

This is a very basic example showing validate a portion of a PAN-OS configuration. Often times, you need to check
for specific values or apply some simple logic to a portion of the config to determine if it is considered
compliant or not. Skillets of type pan_validation allow you to do just that.

By default, Panhandler will always supply a variable called ‘config’ that contains the NGFW running config. The parse
cmd can be used to pull out and capture specific parts of that config. In this example, we use an advanced xpath query
to return a variable containing a list of all zone names configured in the running config. Another advanced xpath is
also used to find an ethernet interface with a specific IP Address. That interface is converted to an object using
capture_object.

The snippets with a cmd type of validate is where the actual compliance checks are performed. The test attribute
will be evaluated as a jinja boolean expression. True values are considered to have ‘passed’ this test.

.meta-cnc.yaml

#
Example Validation Skillet
#
name: example-validate-with-xpath-capture
label: Example of how to use xpath queries to capture specific items of interest.

description: |
 This example Skillet shows how to parse and validate a config using xpath syntax. This example checks the
 configured zones to ensure we do not have one with the attribute name equal to 'does-not-exist'

type: pan_validation
labels:
 collection:
 - Example Skillets
 - Validation

variables:
 # this will allow the user to input a zone name to test
 - name: zone_to_test
 description: Name of the Zone to test for absence
 default: does-not-exist
 type_hint: text
 # as well as an IP address to search for as well
 - name: ip_to_find
 description: IP Address to locate
 default: 10.10.10.10/24
 type_hint: ip_address

snippets:
 - name: parse config variable and capture outputs
 cmd: parse
 variable: config
 outputs:
 # create a variable named 'zone_names' which will be a list of the attribute 'names' from each zone
 # note the use of '//' to select all zones
 # the '@name' will return only the value of the attribute 'name' from each 'entry'
 - name: zone_names
 capture_pattern: /config/devices/entry/vsys/entry/zone//entry/@name
 # note here we can combine an advanced xpath query with 'capture_object'. This will capture
 # the full interface definition from the interface that contains the 'ip_to_find' value
 - name: interface_with_ip
 capture_object: /config/devices/entry/network/interface/ethernet//entry/layer3/ip/entry[@name="{{ ip_to_find }}"]/../..

 # simple test using a jinja expression to verify the 'zone_to_test' variable is not in the 'zone_names' test
 - name: ensure_desired_zone_absent_from_list
 # pan_validation skillet have a default cmd of 'validate'
 cmd: validate
 # note here that you can use jinja variable interpolation just about anywhere
 label: Ensures the {{ zone_to_test }} zone is not configured
 test: zone_test_test not in zone_names
 fail_message: |
 This fail message contains a variable, which is useful for debugging and testing.
 captured values were: {{ zone_names | tojson() }} and {{ interface_with_ip | default('none')| tojson() }}
 # documentation link helps give the user some context about why this test failed or how to manually remediate
 documentation_link: https://github.com/PaloAltoNetworks/skilletlib/blob/develop/docs/source/examples.rst

 Example Skillet with When Conditionals

Example Skillet with When Conditionals

This is a basic ‘validation’ Skillet example that uses ‘when’ conditionals to ‘skip’ certain snippets. This can be
useful to perhaps skip validation tests that are not relevant. For example, there is not need to test a sub-element’s
value if the parent element does not exist.

.meta-cnc.yaml

#
Example When Conditional
#
In order to properly validate a config, it is often necessary to convert the XML structure to an object, which
can then be used in jinja expression to perform basic logic and validation. These examples demonstrate how
skillets are optimized for this task.
#

name: example-when-conditional
label: Example of how to use 'when' conditional

description: |
 This example Skillet shows how to parse and validate a config using the 'when' conditionals.
 This is useful when you want to test a portion on a configuration, but only 'when' a pre-condition test passes. In
 this example, we will ensure the statistics-service is enabled, but only 'when' the update-schedule element is
 present and defined.

type: pan_validation

labels:
 collection:
 - Example Skillets

variables:
 - name: SOME_VARIABLE
 description: Some VARIABLE
 default: present
 type_hint: text

snippets:
 - name: show_device_system
 cmd: parse
 variable: config
 outputs:
 - name: update_schedule_object
 capture_object: /config/devices/entry[@name='localhost.localdomain']/deviceconfig/system/update-schedule

 - name: update_schedule_configured
 label: Ensure Update Schedules are Configured
 test: update_schedule_object is not none
 documentation_link: https://docs.paloaltonetworks.com/pan-os/8-0/pan-os-new-features/content-inspection-features/telemetry-and-threat-intelligence-sharing

 - name: update_schedule_stats_service_configured
 when: update_schedule_object is not none
 label: Ensure Statistics Service is enabled
 test: update_schedule_object| tag_present('update-schedule.statistics-service')
 documentation_link: https://docs.paloaltonetworks.com/pan-os/8-0/pan-os-new-features/content-inspection-features/telemetry-and-threat-intelligence-sharing

 REST

REST

REST Skillet tutorials coming soon!

 Text Templates

Text Templates

Text Template Skillet tutorials coming soon!

_images/initial_skillet_config.png
Skillet Generator

Create a new Skillet
Skillet ID:

Tutorial_Skillet_New

Identifier of the Skillet to create
Skillet Label:

Tutorial Skillet

Human Friendly Name of this Skillet
Skillet Description:

Skillet Generated from uploaded configs

This should provide context for what this skillet will do
Skillet Type:

PAN-0S

Branch:

local

Name of the branch in which to save these local changes
Commit Message:

Create New Skillet

Message to add to commit log for this edit

_images/inspect_tutorial.png
1 Tutorial skillet template The tutorial skillet demonstrates the use of various config snippets and variables)'O ZFEaw

_images/inbound_edl_3.png
Security Policy Rule

General | Source | Destination | Application | Service/URL Category | Actions | Usage

ny 4 Any ny
O oestivation zowe | O oesminamion aooress ~ | O oesmnamion pevice

_images/inbound_edl_4.png
Security Policy Rule

General | Source | Destination | Application

Action Setting
Action | Deny

(0] send 1CMP Unreschable

Profile Setting.

Profile Type | None

Service/URL Category

Actions.

Usage

Log Setting
(] Log a Sesion Start
8 Log at Sesson Enc

Log Forwarding | None

Other Settings
Schedule | None
Qs Marking | None

(] Disable Server Response nspection

_images/ironskillet_components_collections.png
Collections

#

5

6

Collection

© PAN-0S

© IronSkillet 10.0 Panorama Snippets
© IronSkillet 10.0 PAN-OS Snippets
© IronSkillet 10.1 Panorama Snippets
© IronSkillet 10.1 PAN-OS Snippets

© IronSkillet Prototype Playlists

All collections found in repository: IS Components

_images/skillet_metadata2.png
name: tag_color
description: tag_color
type_hint: dropdown
default: ''
help_text:
dd_Tlist:
- key: Red
value: colorl
- key: Green
value: color2
- key: Blue
value: color3
- key: Yellow
value: color4
- key: Copper
value: color5
name: url_name
description: url_name
type_hint: text
default: ''
help_text:

snippets:

name: set_cli
element: |-

set devices tag {{ tag_name }} color {{ tag_color }}

set devices tag {{ tag_name }} comments {{ tag_description }}

set devices external-list {{ edl_name }} type ip recurring five-minute

set devices external-list {{ edl_name }} type ip description {{ edl_description }}
set devices external-list {{ edl_name }} type ip url {{ url_name }}

set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase
set devices rulebase

security
security
security
security
security
security
security
security
security
security
security
security
security
security

rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules

H
H
H
H
H
H
H
H
H
H
H
H
H
{{

ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
ed1_name
edl_name

}}-out to any

}}-out from any

}}-out source any

}}-out destination {{ edl_name }}
}}-out source-user any

}}-out category any

}}-out application any

}}-out service application-default
}}-out source-hip any

}}-out destination-hip any

}}-out tag {{ tag_name }}

}}-out action deny

}}-in to any

}}-in from any

_images/jinja_engine.png
Output rendered and
filtered objects

B ——

Input objects . ﬁ

_images/skillets_section.png
Skillets
Label Type Description Controls
1 Tutorial Skillet panos Skillet Generated from uploaded configs ez BT

All Defined metadata files in repository: SBTest

_images/skillet_yaml_file_template.png
Skillet YAML File Template

Used in panhandler to generate a .meta-
cnc.yaml skeleton file. This will create a
generic skeleton based on the skillet type
selected with placeholder values

Skillet type: template

Collections: Skillet Builder, All

R <

_images/sli_config_diff.png
(venv) DFWMACBINLVDL:sli_test eplatz$ sli diff -of xml
Device: 10.70.221.157
adnin

name: url-558119
xpath: /config/devices/entry[@name="1ocalhost. localdomain"]/vsys/entry [@nam
element: <url>http://edlurl.com</url>

"'vsys1"]/external-list/entry [@name="ed_name"]/type/ip

name: description-561460
xpath: /config/devices/entry[@name="1ocalhost. localdomain"]/vsys/entry [@nam
elenent: <description-edl_description</description>

vsys1"]/external-list/entry [@name="ed1_name"]/type/ip

_images/sli_NGFW_info.png
1i_test eplatz§ sli configure —-name Tutorial _Skillet_New_duplicate

(venv) DFWMACBINLVDI
Device: 10.70.221.157

Username: admin

Password:

edl_description : test edl description
edlurl : http://someurl.com

ed_name : edl3

tag_name : tag2

tag_color : blue

tag_description : tag2 descriptionll

_images/sli_output.png
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices

localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
.localdomain
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.
localhost.

localhost

localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain

localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain
localdomain

vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys
vsys

vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl
vsysl

tag tag_name color colorl

tag tag_name comments tage_description

external-list edl_name type ip recurring five-minute
external-list edl_name type ip description edl_description
external-list edl_name type ip url http://someurl.com
rulebase security rules edl_name-out to any

rulebase security rules edl_name-out from any

rulebase security rules edl_name-out source any

rulebase security rules edl_name-out destination edl_name
rulebase security rules edl_name-out source-user any
rulebase security rules edl_name-out category any

rulebase security rules edl_name-out application any
rulebase security rules edl_name-out service application-default
rulebase security rules edl_name-out source-hip any
rulebase security rules edl_name-out destination-hip any
rulebase security rules edl_name-out tag tag_name

rulebase security rules edl_name-out action deny

rulebase security rules edl_name-in to any

rulebase security rules edl_name-in from any

rulebase security rules edl_name-in source edl_name
rulebase security rules edl_name-in destination any
rulebase security rules edl_name-in source-user any
rulebase security rules edl_name-in category any

rulebase security rules edl_name-in application any
rulebase security rules edl_name-in service application-default
rulebase security rules edl_name-in source-hip any
rulebase security rules edl_name-in destination-hip any
rulebase security rules edl_name-in tag tag_name

rulebase security rules edl_name-in action deny

_images/sli_help.png
Available Actions:

Command Description

capture Capture a value based on object, list, or expression

clear_context Clear out contents of a specific context

configure Execute a configuration skillet of type panos

diff Get the differences between two config versions, candidate, running, previous running, etc
list_context List all available contexts

Load Load and display all skillets of any type

load_set Load set commands in a file against a live NGFW to ensure no error:

workflow Execute a workflow skillet

op Run an operational command and optionally parse and capture the results into the context
rest Execute a validation skillet of type REST

show_context Print out contents of an existing context

validate Execute a validation skillet of type pan_validation

Usage: sli [OPTIONS] [ACTION]

Options:

e, —environment TEXT Environment file

-, Comnit configuration changes
Verbose output
Device IP or hostname
Run a command in debug mode
Fail on SkilletLoader errors
Directory to load skillets from
Device username
Device password
Name of skillet to execute
Generate a panforge formatted report

rf, —report-file TEXT Location of HTHL file to create

-uc, —use-context Use a context manager, (global by default
—cn, —context-name TEXT Use a contexet manager other than global
—ec, —encrypt-context Encrypt the context object

~cp, —context-password TEXT Password for encrypted context

-nc, —no-config Hide full device configuration from output

-of, —output-format [xml|set] Output format, xml or set
help Show this message and exit

_images/snippet_edit_button.png
Edit PAN-OS Snippet x

Snippet When Outputs Tags

Name: Command:
external-list-564407 set v
XPath:

[config/devices/entry[@name="localhost.localdomain”]/vsys/entry[@name="vsys1"]

Element:

<external-list>
<entry name="ed|_name">
<type>
<ip>
<recurring>
<five-minute/>
<Jrecurring>

<url>http:/fediurl.come/urt>
<description>ed|_description</description> \

<fip>

_images/sli_set_txt.png
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

tag tag_name color colorl
tag tag_name comments tag_de
external-list edl_name type
external-list edl_name type
external-list edl_name type
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|

set_commands.txt

scription

ip recurring five-minute

ip description edl_description
ip url http://someurl.com
name-out to any

name-out from any

name-out source any

name-out destination edl_name
name-out source-user any
name-out category any

name—out application any
name-out service application-default
name—out source-hip any
name—out destination-hip any
name-out tag tag_name

name-out action deny

name-in to any

name-in from any

name-in source edl_name
name-in destination any
name-in source-user any
name-in category any

name-in application any
name-in service application-default
name-in source-hip any

name-in destination-hip any
name-in tag tag_name

name-in action deny

_images/skillet_metadata1.png
Skillet Metadata for: Tutorial skillet

name: tag_edl_tutorial
label: Tutorial skillet
description: The tutorial skillet demonstrates the use of various config snippets
and variables
type: template
labels:
collection: Unknown
variables:
- name: tag_name
description: tag_name
type_hint: text
default: ''
- name: edl_name
description: edl_name
type_hint: text
default: ''
- name: tag_description
description: tag_description
type_hint: text
default: ''
- name: edl_description
description: edl_description
type_hint: text
default: ''
help_text:

_images/skillet_link.png
Skillets

Label Type Description Controls

1 Tutorial Skillet panos Skillet Generated from uploaded configs L E-2r i} |

All Defined metadata files in repository: SBTest

_images/inbound_edl_1.png
Security Policy Rule

General | Source | Destination | Application

Service/URL Category

Name | nbound-ed

Rule Type [universal (default)

Description | inbound EDLIP block rule

Tags
Group Rules By Tag

Audit Comment

Audit Comment Archive

_images/inbound_edl_2.png
Security Policy Rule

General | Source | Destination | Application | Service/URL Category

4 Any O any

O souncezone ~ || sounceavoness ~

O @ ed.name

Actions

5 e

ey
8 e

_images/import_playlist_panhandler.png
PANHANDLER ~ PAN-0S TOOLS ~ & paloalto ~

Welcome

ler Tools A suite of tools to ease working with the PAN-OS NGFW XML configuration
Import Skillets 1 P

Skillet Collections

Skillet Repositories Find More Skillets

Favorites

Import Repository (2]

Enter a valid git URL below

Repository Name:

Playlist Includes Tutorial

The arbitrary name of this Repository. No special characters are allowed in this name.

Git Repository HTTPS or SSH URL:

https://github.com/madelinemccombe/Playlist_Includes_Tutorial.git

The 'git' clone link to the repository you would like to import.

_images/import_skillet.png
Import Repository

Enter a valid git URL below
Repository Name:
SBTest
The arbtrary name of this Repository. No special characters are allowed i this name.
Git Repository HTTPS or SSH URL:

git@github.com:eplatz/SkilletBuilderTest.git

The 'git clone link to the repository you would like to import.

_images/skillet_debugger.png
Debug output for: Sample SkilletBuilder skillet with EDL, tag, and security policy

Here is a list of all configuration elements that may be pushed to the PAN-OS device: 192.168.1.43.

Each section contains the xpath along with the XML contents with all user supplied variables interpolated and included in the output.

object_tag

This destructive snippet would be executed

{
"name": "object_tag",
"xpath": "/config/devices/entry[@name=\"localhost.localdomain\"]/vsys/entry[@name=\"vsys1\"]/tag",
"element"”: "<entry name=\"tag name\">\n <color>coloril</color>\n <comments>tag description</comments>\n</entry>",
"cmd": "set”,
"file": "",
"template_title": ™"
¥

/config/devices/entry[@name="1ocalhost.localdomain"]/vsys/entry[@name="vsys1"]/tag

<entry name="tag name">
<color>colori</color>
<comments>tag description</comments>
</entry>

obiect edl

_images/skillet_controls.png
Skillets

Label Type Description Controls

1 Tutorial Skillet panos Skillet Generated from uploaded configs L E-Ard B |

All Defined metadata files in repository: SBTest

_images/skillet_editor_snippets.png
Skillet Editor

Name: Label:

Tutorial_Skillet_New Tutorial Skillet

Description:

Skillet Generated from uploaded configs

Labels:

collection

Variables:

Snippets:

% device-telemetry-682432

entry-338898

user-id-collector-111676

external-list-904484

tag-654960

Unknown

set

set

set

set

set

Type:

panos

4
4
- =
4
4

_images/skillet_directory_files.png
SkilletBuilderTest | sb_tutorial | & README. md

3 5 Proect + 0o & -
§ - SiilletBuilderTest -/siietBuiderTest

M sb_tutorial

. & README.md

£ sb_tutorial skilletyaml

8 & LICENSE

>

4 README.md
> Il External Libraries
P Scratches and Consoles

quests

_images/skillet_framework.png
Skillet Framework

—— master
branches

— panos_v9.0

README

Skillet folders
and docs

Supporting files
| (optional)

— README

Skillet files and
docs

Skillet metadata
and inline content

_images/skillet_editor_update.png
Skillet Editor = e

Name: Label: Type:
tag_edl_tutorial Tutorial skillet template
Description:

The tutorial skillet demonstrates the use of various config snippets and variables

Labels:

collection : | Unknown =

Add Label

Variables:

ag_name : | tag_name - =
$ | edl_name : | edl_name - =
$ | tag_description : | tag_description - =
S | edl_description : | edl_description = =
$ | tag_color : | tag_color - =
$ | url : | enter_url - =

Add Variable

_images/skillet_generator_fill.png
Skillet Generator

Connect to Device

Hostname:

192.168.55.129

API Port:

443

Username:

admin

Password:

Cancel

<>

_images/skillet_framework_yaml_file.png
nane: myskilletnane
Label: my_skillet_label
description: this is what my skillet does reamble
type: panos used to organize, display skillet info
collection: type sets output actions
- tutorial

variables:
name: hostname

description: Firewall hostname :
default: myFirewall variables

peklat: text used for config value substitutions
description: sample dropdown list set panhandler form field types and defaults
default: choices
type_hint: dropdown
dd_list:
= key: optionl
value: optionl
key: option2
value: option2

B — snippets
name: quick_name load-order dependent list of config elements

xpath: /config/devices/restofthe/xnltree match xml config file to its ngfw xpath
file: filename.xml

_images/skeleton_yaml_file.png
Render Template (22K

Customize Template: Skillet YAML File Template
Skillet ID:

validation_tutorial

Skillet label (selection name in panhandler):

validation to test stuff

Skillet Description:

validation to test: ntp, password complexity, url-filtering to block. malware, and security rules profiles

Collection Name (aka grouping name):

Tutorial

Skillettune (action taken by panhandler on Submit):

validation

_images/set_commands_details.png
Set_Commands_Tutorial

Branch: main

Last Updated: 2021-05-18 16:43

_images/skillet_builder_tile.png
Skillet Builder

12 Skillets in the Skillet Builder
Collection

_images/text_to_replace.png
Create Variable from all occurrences of text

Variable Name

1

Text to Replace

_images/update_edl_snippet.png
Edit PAN-OS Snippet x

Snippet When Outputs Tags

Name: Command:
external-list-564407 set v
XPath:

[config/devices/entry[@name="localhost.localdomain] vsys/entry[@name="vsys1"]

Element:

<external-list>
<entry name="{{ ed|_name }}">
<type>
<ip>
<recurring>
<five-minute/>
<Jrecurring>
<url>{{ edl_url })<furl>
<description>{{ ed|_description }}</description>
<fip>
4

Cpane o

_images/tutorial_edit.png
1 Tutorial skillet template The tutorial skillet demonstrates the use of various config snippets and variables '}'IZ' (L]

_images/validation_output1.png
Step 1: Sample SkilletBuilder workflow for EDL validation and configuration

Sample SkilletBuilder validation for EDL, tag, and security policy
Check Results Severity ?

1 configure IP External Dynamic List (EDL) object o low (=

There are no External Dynamic Lists (EDL) configured on this firewall for http://sampleurl.com.

2 configure security rule blocking traffic to EDL object © low (=

There are no security rules denying traffic to the destination of External Dynamic Lists (EDL) object.

3 configure security rule blocking traffic from EDL oject o low (=

There are no security rules denying traffic from the source of External Dynamic Lists (EDL) object.

0 .
Continue

_images/validation_output.png
Validation Results

Sample Validation Skillet
Check

1 configure primary and secondary ntp servers

recommended primary and secondary ntp servers are configured

2 configure strong password complexity (>= 12 chars)

password complexity is enabled with a minimum password length of 12 characters

3 check that all url profiles block category malware

url profiles not blocking malware: ['Alert-Only-URL']

4 check that all allow security policies have a profile or group

allow security policies without a profile or group: ['HS-non-def-web-ports', 'HS-find-non-def-apps']

Results

Passed

Passed

Failed

Failed

Severity

low

low

high

medium

v

Documentation
Documentation
Documentation

Documentation

_images/variables_empty.png
PAN-OS Configuration

Customize PAN-OS Skillet: Tutorial Skillet

edl_description:

edl_url:

ed|_name:

tag_name:

tag_color:

Blue

tag_description:

o

Cancs) m

_images/validation_user_input.png
Step 1: Sample SkilletBuilder workflow for EDL validation and configuration / Sample SkilletBuilder validation for EDL, tag, and security policy (228 o

Sample SkilletBuilder validation for EDL, tag, and security policy
Validation Mode:

Online v

Online mode will pull configuration directly from an accessible PAN-OS device. Offline allows an XML configuration file to be uploaded.

_images/vars_section_edl.png
Variables:

4 edl_description s text -

3 ediur : | text =

% edl_name : | text =

_images/variables_user_input.png
PAN-OS Configuration

Customize PAN-OS Skillet: Tutorial Skillet

edl_description:

test edl description

edl_url:

http://someurl.com

ed|_name:

EDL1

tag_name:
tagl
tag_color:

Green

tag_description:

green tag

o

Cancs) m

_images/view_ssh_public_key.png
& paloalto ~

Environments
Create Environment
View Context

Clear Cache

View SSH Public Key
Logout

_images/submodule_init_IDE.png
[&] Project v =T T %

— | & .gitmodules

v [Playlist_Includes_Tutorial ~/STS_Projects/Playlist_Includes_Tutorial [submodule "submodules/ironskillet-components"]
> Menv

path = submodules/ironskillet-components

> [playlists url = https://github.com/PaloAltoNetworks/ironskillet-components.git

v [ironskillet-components

> [panos_v9.1
> M panos_v10.0
> [panos_v10.1

i .gitignore

& LICENSE

% README.md

i .gitignore
& .gitmodules
& LICENSE
#% README.md

_images/submodule_in_repository.png
Name Last commit Last update

@ ironskillet-components @ 4ab51ae9 update submodules 2 months ago

@ panos-config-elements @ 7be79e2e add submodules 2 months ago

_images/switch_variables.png
Edit Text

Edit

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

tag {{ tag_name }} color colorl

tag {{ tag_name }} comments
external-list edl_name type
external-list edl_name type
external-list edl_name type

rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase

security
security
security
security
security
security
security
security
security
security
security
security
security
security
security

rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules

edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out
edl_name-out

tag_description

ip recurring five-minute

ip description edl_description
ip url http://someurl.com

to any

from any

source any
destination edl_name
source-user any
category any
application any
service application-default
source-hip any
destination-hip any
tag {{ tag_name }}
action deny

edl_name-in to any
edl_name-in from any

Create Variable from all occurrences of text

N

tag_|

name

edl_name-in source edl_name

tag_name

N

it

_images/submodule_init_github.png
& madelinemccombe / Playlist_Includes_Tutorial @uUnwatch ~ 1 ¥ Star 0 YFork 0

<>Code () Issues 11 Pull requests ® Actions [Projects 00 wiki @ security |2 Insights

¥ main - | Playlist_Includes_Tutorial / submodules / Gotofile | Addfier | -

Madeline McCombe add submodule - 5daysago D History

ironskillet-components @ 5985¢53 add submodule 5 days ago

_images/tag_configure.png
Tag

Name
Color

Comments

tag_description

“ Cancel

_images/tag_colors.png
Edit Variable x

Required ~ Optional

Name:

tag_color

Description:

tag_color

Default:

Variable Type:

Dropdown Select v

Dropdown Items:

Blue ;| color -
Green : color2 -
Purple ;| color7 -

New Dropdown List Item

key : | value +

_images/tag_variables_replaced.png
Edit

<tag>
<entry name="{{ tag_name }}">
<color>{{ tag_color }}</color>
<comments>{{ tag_description }}</comments>
</entry>
</tag>

_images/tag_settings.png
Name | tag_name

Color | Wl Rea

Comments | 2g_cesepton

_images/test_skillet.png
1 Tutorial skillet‘,{nplate The tutorial skillet demonstrates the use of various config snippets and variables | E-Ar @ B |

_images/template_skillet_output.png
Results for Tutorial skillet

output

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices
devices

tag tag_name color color2

tag tag_name comments example tag
external-list edl_name type ip recurring five-minute
external-list edl_name type ip description Edl for Tutorial
external-list edl_name type ip url https://someurl.com

rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase

security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security

rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules

ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in
ed1l_name-in

to any
from any
source any
destination edl_name
source-user any
category any
application any
service application-default
source-hip any
destination-hip any
tag tag_name
action deny
to any
from any
source edl_name
destination any
source-user any
category any
application any
service application-default
source-hip any
destination-hip any
tag tag_name
action deny

_images/snippets_edit.png
Skillet Editor © e

Name: Label: Type:
tag_edl_tutorial Tutorial skillet template
Description:

Tutorial skillet to configure tag, EDL and security rules

4
Labels:
collection : | Unknown =
Add Label
Variables:
Add Variable
Snippets: \
s set_cli - =
Add Snippet
Branch:
local

Name of the branch in which to save these local changes

_images/configure_target_screen.png
Step 2: Sample SkilletBuilder workflow for EDL validation and configuration / Sample SkilletBuilder skillet with EDL, tag, and security policy e

Configure Target information

PAN-OS IP:

192.168.1.1

Target Port:

443

PAN-OS Username:

admin

PAN-OS Password:

Commit Options:

Do not Commit. Push changes only

O Perform Backup

_images/connect_to_device.png
Skillet Generator (2]

Connect to Device
Hostname:

10.70.221157

Panorama port:

443

Username:

admin

Password:

_images/commit_button.png
ommit v

B

DEVICE

_images/commit_skillet.png
Commit Options:

Commit and wait to finish v

O Perform Backup

[g J8] st

_images/create_repo_settings.png
Create a new repository

A repository contains all project files, including the revision history. Already have a project repository
elsewhere? Import a repository.

Owner * Repository name *

® eplatz~ [SkilletBuilderTest v
Great repository names are short and memorable. Need inspiration? How about solid-octo-parakeet?
Description (optional)

This is a tutorial skillet used to demonstrate how to build a skillet with SkilletBuilder tools and PanHandler.

® Public
n: Anyone on the internet can see this repository. You choose who can commit.

) El Private
YYou choose who can see and commit to this repository.

Initialize this repository with:
Skip this step if you're importing an existing repository.

Add a README file

This is where you can write a long description for your project. Learn more.

0 Add gitignore
Choose which files not to track from a list of templates. Learn more.

Choose a license
Alicense tells others what they can and can't do with your code. Learn more.

icense: MIT License ~

This will set ¥ main as the default branch. Change the default name in your settings.

_images/create_skillet.png
Repository Detail for Set_Commands_Tutorial

Details

Active Branch: main

git@github.com:BoraMutluoglu/set_commands_tutorial.git

Update To Latest Remove Repository

Latest Updates
Message
1 Delete .skillet.yaml
2 Create .skillet.yaml
3 Delete .skillet.yaml
4 Delete .gitignore
5 Delete set_commands_tutorial.conf

Commit History for branch: main

Create Skillet

Author

BoraMutluoglu
BoraMutluoglu
BoraMutluoglu
BoraMutluoglu

BoraMutluoglu

Date

2021-05-18 16:43

2021-05-12 19:50

2021-05-11 21:41

2021-05-11 21:41

2021-05-11 21:41

_images/context_section.png
Test Skillet X

This tool will allow you to step through the execution of this skillet snippet by snippet using the provided context. Each snippet can add to the
context which will be passed to the next skillet. This is a great place to explore output capturing and other syntax options before saving your

skillet.
\:ontext:

{ {

"name": "set_cli",

Snippet:

«

"tag_name": "tag_name",

"element": "set devices tag {{ tag_name }} color {{ tag_color }}\nset
devices tag {{ tag_name }} comments {{ tag_description }}\nset
devices external-list {{ edl_name }} type ip recurring five-

"edl_name": "edl_name",
"tag_description": "tag_description",
"edI_description": "ed|_description",

minute\nset devices external-list {{ edl_name }} type ip description {{
ed|_description }}\nset devices external-list {{ edl_name }} type ip url
{{ url_name }}\nset devices rulebase security rules {{ edl_name }}-

"tag_color": "tag_color",
"url_name": "url_name",
Illoo Il: nn
Z p ! %4
=z
*Note the device configuration is always added to the context as the 'config' variable,
however it is filtered out in this view for brevity.

Outputs: Step Through Snippets:

set_cli cC » »

Skip Ahead to Snippet:

set_cli

=z

Dismiss

_images/copy_ssh_key.png
'SSH Public Key

Copy the following text and add it to your private SSH repositories or user account to allow access from this application.

ssh-rsa

PAN_CNC

Instructions for adding this key to your account:

GitLab

Github

BitBucket

Others

_images/create_skillet_button.png
Repository Detail for SBTest

Details

Active Branch: main

This is a tutorial skillet used to demonstrate how to build a skillet with SkilletBuilder tools and PanHandler.

https://github.com/eplatz/SkilletBuilderTest.git

Latest Updates
Message
1 Initial commit

Commit History for branch: main
Skillets

Label Type

All Defined metadata files in repository: SBTest

Collections
Collection

All collections found in repository: SBTest

Author

Emily Platz

Description

Date

2021-05-10 22:51

Controls

Create Skillet

_images/panhandler_imported_repositories.png
PANHANDLER ~ PAN-OS TOOLS ~ & paloalto ~

Welcome

Import Skillets orted Repositories

Skillet Collections

Skillet Repositories

Favorites

Options Search

Import Skile Repository || Update All Reposiories 1

Last Updated

Playlist Includes Tutorial

Branch: main

https://github.com/madelinemccombe/Pl
aylist_Includes_Tutorial.git main

Last Updated: 2021-06-23 07:09

Import Skillet Repository

_images/debug_button.png
Snippets:

$ | setcli 2 - =

Add Snippet

Branch:

local

Name of the branch in which to save these local changes
Commit Message:

Create Tutorial Skillet

Message to add to commit log for this edit

_images/panhandler_repo_detail.png
Details

Active Branch: master

https://github.com/ceskillets/SecOps-HTTP-Response-Codes.git master

https://github.com/ceskillets/SecOps-HTTP-Response-Codes.git

Update To Latest Remove Repository

Latest Updates

#

a

5

Message

Merge pull request #1 from scotchoaf/master add validation skillet

remove idea dir
add validation
Update README.md

added to new repo for ceskillets

Commit History for branch: master

Metadata files

#

Label
HTTPStatusCodes

SecOps - check http response codes
config merge - panos_v9.0

View

Description
This skillet adds HTTP Status Codes

This skillet checks to ensure there ar
https://github.com/ceskillets/SecOps

_images/panhandler_nav.png
PANHANDLER ~)PAN-OS TOOLS ~ & paloalto ~

Welcome
Import Skillets
Skillet Collections

Skillet Repositories

“onandler

Panhandler is a tool for sharing PAN-OS configurations and configuration sets called Skillets. These
configs are stored and shared via Git repositories. In addition to PAN-OS, Panhandler can also manage
other types of Skillets, such as Terraform templates, REST APlIs, or generic network device
configuration templates.

To find out more about Skillets or discover new Skillets, see the live community page here.

To learn more about building Configuration and Validation Skillets, see the Skillet Builder
Documentation.

_images/panos_full_variables.png
PAN-0S Configuration

‘Customize PAN-OS Skillet: IronSkillet PAN-OS 10.0
firewall management P type:

ahep-ciiont

select the management ntrtce il use OHGP o sttc confiraton
primary dns server:
8888
secondary dns server.
8844
Firowall ostname:
panos-01
primary NTP server
Opoolntp.org
secandary NTP server:
“.poolntp.org
fetime for the api key n minues:

525600

o5 the xpiaton pariod or generated AP beys
admin username:

adminuser

admin password

sysiog server ip address:

192022

email gateway address for crtical alerts:

192021

mail server prtieconfigurationunder Devie —> Servr rofles
from address in email alerts:

sentfrom@yourdomain.com
el seve et confgraton unde Deics > Save raies
1o address in amail alorts:

sendto@yourdomain.com
el seve et confgraton unde Deics > Save raies
sinkhola FQDN Pud:

sinkhole paloaltonetworks.com

FQDN valu for the 1PV snkhle adaressused nth anti-sppwars sty prfis
sinkhole address IPUG:

2600:5200:1

1P adares or the 1PV soknole used n th anti-spywars secuty prfls
include the predefined Palo Alto Networks external lists security rules:

e

_images/panorama_variables.png
Panorama Configuration

Customize Panorama Skillet: IronSkillet Panorama Not-Shared Security Policies 10.0
Device-group name for Panorama:

sample_devicegroup

creates a sample device-group with IronSkillet configuration elements
sinkhole FQDN IPv4:

sinkhole.paloaltonetworks.com

FQDN value for the IPV4 sinkhole address used in the anti-spyware security profile
sinkhole address IPv6:

2600:5200::1

IP address for the IPV6 sinkhole used in the anti-spyware security profile

ow

_images/outbound_edl_2.png
Security Policy Rule

General | Source | Destination | Application | Service/URL Category | Actions

Ay & any ny L
O sourcezon ~ || O sounce nomness ~ | O sounce ueen ~ | O sounceomwce ~

_images/outbound_edl_1.png
Security Policy Rule

General | Source | Destination | Application

Service/URL Category

Name [autbound-ed

Rule Ty | untversadetaut)

Description outbound EDL IP block rule

L -

Group Rules By Tog None

Audit Comment

Audit Comment Archive

_images/outbound_edl_4.png
Security Policy Rule

General | Source | Destination | Application

Action Setting
Action | Deny

(0] send 1CMP Unreschable

Profile Setting.

Profile Type | None

Service/URL Category

Actions.

Usage

Log Setting
(] Log a Sesion Start
8 Log at Sesson Enc

Log Forwarding | None

Other Settings
Schedule | None
Qs Marking | None

(] Disable Server Response nspection

_images/outbound_edl_3.png
Security Policy Rule

General | Source | Destination | Application | Service/URL Category | Actions | Usage

[any [any any
O oestivation zowe | O oesminamion aooress ~ | O oesmnamion pevice

O @ ed.name

_images/panhandler_dropdown1.png
PANHANDLER - PAN-OS TOOLS ~

Welcome

Import Skillets
Skillet Collections
Skillet Repositories

Favorites

_images/panhandler_dropdown.png
PANHANDLER ~

Welcome
Import Skillets
Skillet Collections
Skillet Repositories

Favorites

_images/Generate_Set_Commands_offline_files_to_upload.png
Generate set commands from configs
Base Configuration:

Browse... No file selected.

Initial XML configuration from Before any changes are made
Modified Configuration:

Browse... No file selected.

XML configuration from After any changes are made

_images/Generate_Set_Commands_offline_or_offline_selection.png
Workflow

Generate Set CLI Commands

eu

Select from where you would like to compare changes. Either from a device or from a set of uploaded configurations.

_images/Configuration_Explorer_Tool_xpath_query.png
XPATH Query:

/config/devices/entry[@name='localhost.localdomain']/vsys/entry[@name="vsys1']/profiles

XPath Query to run against the configuration.

_images/External_list.png
External Dynamic Lists

Name | edl_name

Create List List Entries And Exceptions

Type | IP List

Description | edl_description

Source | http:/someurl.com

Certificate Profile | None v

Check for updates | Every five minutes v

Test Source URL Cancel

_images/Generate_Set_Commands_online_mode_API_values.png
Generate set commands from device

Hostname:

192.168.55.128

Username:

admin

Password:

Configuration Source:
I v From Running Configuration
From Candidate Configuration

_images/debug_overview.png
Debug output for: IronSkillet Alert-Only 10.0

Here is a list of all configuration elements that may be pushed to the PAN-OS device: 10.0.0.186.

Each section contains the xpath along with the XML contents with all user supplied variables interpolated and included in the output.

panos_ngfw_tag_10_0.ironskillet_tag_ironskillet_version

This destructive snippet would be executed

{
“name": "panos_ngfw_tag_10_0.ironskillet_tag_ironskillet_version",
"xpath": "/config/devices/entry[@name="1localhost.localdomain']/vsys/entry[@name="'vsys1']/tag",
“element": "<entry name=\"iron-skillet-version\">\n <comments>version 0.0.2 for 10.0 - version of this Ironskillet temp
Eilles: s
"cmd": “set"
}

/config/devices/entry [@name='localhost.localdomain']/vsys/entry[@name="vsys1']/tag

<entry name="iron-skillet-version">
<comments>version .0.2 for 10.0 - version of this Ironskillet template file</comments>
</entry>

_images/debug_snippet_output.png
Outputs:

{
"debug": "No config changes pushed to the device during testing,
debug only showing rendered output’,
"metadata"; {
"name": "device-telemetry-225239",
"xpath":
“Jconfig/devicesfentry[@name=\"localhost.localdomain\"}/deviceconfig/sy
stem",

_images/debug_context.png
Context:

"username": "admin”,
"password": "Clouds123",
rintion": "ed| description”,

"http://someurl.com’,

: "color3",
"tag_description": "blue tag"

R

_images/debug_output.png
Debug output for: Tutorial Skillet

Here is a list of all configuration elements that may be pushed to the PAN-OS device: 10.70.221.176.

Each section contains the xpath along with the XML contents with all user supplied variables interpolated and included in the output.

device-telemetry-225239

This destructive snippet would be executed

{
“name": "device-telemetry-225239",
“xpath": "/config/devices/entry[@name=\"localhost. localdomain\"]/deviceconfig/systen",
“element": "<device-telemetry>\n <device-health-performance>yes</device-health-performance>\n <produ
cmd": “set",
Gy oo,
“template_title":
}

/config/devices/entry[@name="localhost. localdomain"]/deviceconfig/system

<device-telemetry>
<device-health-performance>yes</device-health-performance>
<product-usage>yes</product-usage>
<threat-prevention>yes</threat-prevention>
<region>Anericas</region>
</device-telenetry>

_images/Configuration_Explorer_Tool_online_mode_API_values.png
Configuration Explorer Tool

Configuration Mode:

Online j

Online will query a PAN-OS device via API, Offline will allow you to paste in a full Configuration.
Hostname:

192.168.55.128

Username:

admin

Password:

Online Configuration Source:

v Running Configuration
Candidate Configuration

T T T Y U P T T T ™ D S

_images/dropdown.png
Edit Variable

Required Optional

Name:

tag_color

Description:

tag_color

Default:

Variable Type: /

Dropdown Select

Dropdown Items:

Red
Green
Blue

Yellow

color1

color2

color3

color4

Nropdown List Iltem \

Copper

colorb

<

N\

+

_images/Configuration_Explorer_Tool_output.png
Completed: Configuration Explorer Tool

Execution Results:

<entry name="block_list">
<color>colorl</color>
<comments>block list tag</comments>

</entry>

<entry name="tag name">
<color>colorl</color>
<comments>tag description</comments>

</entry>

</tag>

json
{
"tag": {
"entry": [
{
"@name": "block_list",
"color": "colorl",
""comments": "block list tag"
+
{
"@name": "tag name",
"color": "colorl",
"'comments": '"tag description"
}
1
}

_images/edit_variable_type.png
Edit Variable

Required ~ Optional

Name:

tag_color

Description:

tag_color
Default:

Variable Type:

Text

_images/dismiss_snippet_debug.png
Step Through Snippets:

device-telemetry-225239

Skip Ahead to Snippet:

»

_images/Configuration_Explorer_Tool_offline_mode_input.png
Configuration Explorer Tool

Configuration Mode:

Offline

Online will query a PAN-OS device via API, Offline will allow you to paste in a full Configuration.
XPATH Query:

/config/devices/entry[@name='localhost.localdomain']/vsys/entry[@name="vsys1']/profiles

XPath Query to run against the configuration.
Offline Config:

<?xml version="1.0"?>
<config version="9.0.0" urldb="paloaltonetworks">
<mgt-config>
<users>
<entry name="admin">
<phash>1sjmbecxn$1LOiIrdFOc7WmIQ6zr8mbDn.</phash>
<permissions>
<role-based>
<superuser>yes</superuser>
</role-based>
</permissions>
</entry>
</users>

_images/dns_variable_load.png
panos_ngfw_device_system_dns_10_0.ironskillet_device_system_servers

This destructive snippet would be executed

{
“name": "panos_ngfu_device_systen_dns_10_0. ironskillet_device_system_servers",
/config/devices/entry [@name="localhost. localdomain'] /deviceconfig/systen/dns-setting",
<servers>\n <primary>8.8.8.8</primary>\n <secondary>8.8.4.4</secondary>\n</servers>",
}

/config/devices/entry@name="localhost. localdomain'] /deviceconfig/systen/dns-setting

<servers>
<primary>8.8.8.8</prinary>
<secondary>8.8.4.4</secondary>
</servers>

_images/edl_description_variable.png
Create Variable from all occurrences of text

ed|_description

edl_description

1

_images/navigate_security_policy.png
DASHBOARD ACC MONITOR OBJECTS NETWORK DEVICE

= Security
E Rl Source

12| QoS

Policy/Based IQrwarding NAME TAGS TYPE ZONE ADDRESS USER DEVICE ZONE AD

=| Decryption
1 intrazone-default none intrazone any any any any (intrazone) any

B Tunnel Inspection @
Application Override .)
2 interzone-default none interzone any any any any any any
Authentication (o)
@ DoS Protection
(# sp-waN

Policy Optimizer
Q No App Specified 0
@ Unused Apps 0
EE Rule Usage
E_‘) Unused in 30 days 2
E_‘) Unused in 90 days 2
E_‘) Unused 2

Object : Addresses + | (D) Add Move ¥ (2) PDF/CSV [] Highlight Unused Rules »

_images/merge_done.png
Pull request successfully merged and closed Delete branch
You're all set—the 1local branch can be safely deleted.

_images/out_of_order.png
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

rules
rules
rules
rules
rules
rules
rules
rules
rules
rules

rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase

security
security
security
security
security
security
security
security
security
security
rulebase security rules
rulebase security rules
tag tag_name color colorl

ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out
ed1_name-out

to any

from any

source any
destination edl_name
source-user any
category any
application any
service application-default
source-hip any
destination-hip any
tag tag_name

action deny

tag tag_name comments tag_description

ip recurring five-minute

ip description edl_description
ip url http://someurl.com

external-list edl_name type

external-list edl_name type

external-list edl_name type

rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|
rulebase security rules edl_|

name-in
name-in
name-in
name-in
name-in
name-in
name-in
name-in
name-in
name-in
name-in
name-in

to any

from any

source edl_name
destination any
source-user any
category any
application any
service application-default
source-hip any
destination-hip any
tag tag_name

action deny

_images/new_repo_button.png
Repositories -

_images/debug_button_panhandler.png
PANHANDLER ~

PAN-OS Skillet

Configure Target information
PAN-OS IP:

10.0.0186

Target Port:

443

PAN-0S Username:

admin

PAN-OS Password:

Commit Options:

Do not Commit. Push changes only

[CIPerform Backup

— Deb:

paloalto ~

_images/edl_vars_updated.png
Edit Text

Edit

<external-list>
<entry name:
<type>
<ip>
<recurring>
<five-minute/>
</recurring>
<url>{{ edl_url }}</url>
<description>{{ edl_description }}</description>
</ip>
</type>
</entry>
</external-list>

{ edl_name }}"

_images/export_configs.png
High Availability

B3 Config Audit

@ password Profiles

S, Administrators

£ Admin Roles

(38, Authentication Profile
%5 Authentication Sequence
User Identification

5 Data Redistribution

2 Device Quarantine

(@] VM Information Sources
22 Troubleshooting
(@ Certificate Management

Configuration Management

Content

iFire

Revert Revert to last saved configuration
Revert to running configuration
Save Save named configuration snapshot
Save candidate configuration
Load Load named configuration snapshot
Load configuration version
e
Export configuration version

Export device state

_images/edl_settings.png
External Dynamic Lists

Name e name

Create List | List Entries And Exceptions

e URLLt

Description ed!_description

Source [Rapisomeuricom

Server Authentication

Certtcte rotie [None

Check for updates [Every e minutes

Test Source URL

_images/edl_url_variable.png
Create Variable from all occurrences of text

httpi/fedlurl.com

edl_url

!

_images/final_pull.png
Added color coding table to skillet file #3

i oNol W BoraMutluoglu wants to merge 1 commit into main from local [Z)

L) Conversation 0 -0- Commits 1 [F} Checks o0 Files changed 1

H BoraMutluoglu commented now © -

Add useful comment

o added color coding table 122195c¢

Add more commits by pushing to the lecal branch on BoraMutluoglu/set_commands_tutorial.

@ Continuous integration has not been set up

GitHub Actions and several other apps can be used to automatically catch bugs and enforce style.

° This branch has no conflicts with the base branch

\ Merging can be performed automatically.
Merge pull request v You can also open this in GitHub Desktop or view command line instructions.
Write Preview H B I i= O 2 = B @ 2 «-

Leave a comment

V

Attach files by dragging & dropping, selecting or pasting them.

1% Close pull request m

_images/find_pull.png
This branch is 1 commit ahead, 6 commits behind main. \IfPuII request Compare

_images/export_snapshot.png
DASHBOARD ACC MONITOR POLICIES OBJECTS NETWORK

(28} Setup Management Operations Services Interfaces Telemetry Content-ID WildFire Session HSM DLP
High Avaitahjlity

G Config Audit Configuration Management Device Operations

@ Password Profiles

E Administrators Revert Revert to last saved configuration 3 Reboot Device

@ Admin Roles Revert to running configuration =9 Shutdown Device
Authentication Profile Save Save named configuration snapshot

Authentication Sequence Save candidate configuration

E2) User Identification Load Load named configuration snapshot

Data Redistribution Load configuration version Miscellaneous
I%] Device Quarantine

Export Export named configuratio apshot
VM Information Sources % Custom Logos

= . Export configuration version
Troubleshooting % SNMP Setup

@ Certificate Management
E Certificates Import Import named configuration snapshot

Export device state

& Certificate Profile Import device state

_images/external_list_edit.png
Snippets:

o

o

o«

©

o

device-telemetry-682432

entry-338898

user-id-collector-111676

external-list-904484

tag-654960

security-200066

set

set

set

set

set

set

_images/run_workflow_menu.png
Workflow

Sample SkilletBuilder workflow for EDL validation and configuration
NGFW IP or Hostname:

192.168.1.1

NGFW Username:

admin

NGFW Password:

External Dynamic List's Source URL:

http://someurl.com

Config Validation Options:

Validate configuration at the beginning of the workflow

Validate configuration at the end of the workflow

(2]

_images/save_config_snapshot.png
DASHBOARD ACC MONITOR POLICIES OBJECTS NETWORK

Management Operations Services Interfaces Telemetry Content-ID WildFire Session HS DLP
High Ava”’my\ P
Sonfigilcit Configuration Management \

Device Operations

@ Password Profiles

E Administrators Revert Revert to last saved configuration O3 Reboot Device

@ Admin Roles Revert to running configuration =9 Shutdown Device
Authentication Profile Save Save named configuration snapshot

Authentication Sequence Save candidate configuration

@ Reglcentficstion Load Load named configuration snapshot

t=r Data Redistribution

Load configuration version
Device Quarantine

Miscellaneous

Export Export named configuration snapshot

VM Information Sources % Custom Logos
- . Export configuration version b
Troubleshooting % SNMP Setup
@ Certificate Management Bxport device state
E Certificates Import Import named configuration snapshot
E Certificate Profile Import device state

_images/save_baseline.png
Save Named Configuration

Name | baselinexmi

_images/save_skillet.png
Variables:

$ tag_name tag_name - =
$ edl_name edl_name - =
$ tag_description tag_description - =
$ edl_description edl_description - =
$ | tag_color tag_color - =
$ | url enter_url - =

Add Variable

Snippets:

S | setcli . - @
Add Snippet

Branch:

local

Name of the branch in which to save these local changes
Commit Message:

Create Tutorial Skillet

Message to add to commit log for this edit

_images/save_named_config.png
S High Availability

B3 Config Audit

@ password Profiles

S, Administrators

£ Admin Roles

(38, Authentication Profile
%5 Authentication Sequence
User Identification

5 Data Redistribution

2 Device Quarantine

(@] VM Information Sources
W T oubleshooting

Configuration Management

Revert Revert to last saved configuration

Revert to running configuration

Save guration snaj

Save candidate conhiguration

Load Load named configuration snapshot
Load configuration version
Export Export named configuration snapshot

Export configuration version

_images/set_command_snippet_edit.png
Edit Template Snippet

Name:

set_cli

Title:

Template Title

Template:

set tag tag_name color color1

set tag tag_name comments tag_description

set external-list edl_name type ip recurring five-minute

set external-list edl_name type ip description edl_description
set external-list edl_name type ip url http://someurl.com

set rulebase security rules edl_name-out to any

set rulebase security rules edl_name-out from any

3

_images/security_policy_add.png
Source Destination
NAME TAGS TYPE ZONE ADDRESS USER DEVICE ZONE ADDRESS DEVICE APPLICATION SERVICE ACTION
1 | edl_name-out universal any any any any any [@ edl_name any any %2 application-d... Deny
2 | edl_name-in universal any [@ edl_name any any any any any any 22 application-d... Deny

_images/repo_detail_tutorial.png
Repository Detail for Set_Commands_Tutorial

Details

Active Branch: local

git@github.com:BoraMutluoglu/set_commands_tutorial.git

Update To Latest Remove Repository Create Skillet _

Latest Updates
Message Author Date
1 Create Tutorial Skillet cnc_user 2021-05-18 21:26
2 Create Tutorial Skillet cnc_user 2021-05-18 21:24
3 Delete .skillet.yaml| BoraMutluoglu 2021-05-18 16:43
4 Create .skillet.yaml BoraMutluoglu 2021-05-12 19:50
5 Delete .skillet.yaml| BoraMutluoglu 2021-05-11 21:41

Commit History for branch: local

Skillets
Label Type Description Controls
1 Tutorial skillet template The tutorial skillet demonstrates the use of various config snippets and variables | E-Ar @ B |

All Defined metadata files in repository: Set_Commands_Tutorial

_images/render_template.png
Render Template

Customize Template: Tutorial skillet
tag_name:

tag_name

edl_name:

edl_name

tag_description:

example tag

ed|_description:

EdlI for Tutorial

tag_color:

Green

url_name:

https://someurl.com

Cancel

(2 28]

<

_images/repository_details_panhandler.png
Repository Detail for Playist Includes Tutorial

Details

Active Branch: main
https://github.com/madelinemccombe/Playist_Includes_Tutorial.git main

https://github.com/madelinemccombe/Playlist_Includes_Tutorial.git

Crae s

e
@ Update To Latest I Remove Repasitory
e —

_images/repo_details.png
SBTest

Branch: main

This is a tutorial skillet used to
demonstrate how to build a skillet with
SkilletBuilder tools and PanHandler.

Last Updated: 2021-05-10 22:51

_images/edl_name_replaced.png
<external-list>
<entry name="{{ edl_name }}">
<type>

_images/edl_name_variable.png
Edit Text

Edit

<external-list>
<entry name="gdl_nane">
<type>
<ip>
<recurring>
<five-minute/>
</recurring>
<url>http://edlurl.con</url>
<description>edl_description</description>
</ip>
</type>
</entry>
</external-list>

Create Variable from all occurrences of text

ed|_name

Text that is being replaced in the snippet

ed|_name

Desired variable name

_images/github_branch.png
& BoraMutluoglu / set_commands_tutorial Private

<> Code (O) Issues 1% Pull requests (*) Actions [M1] Projects

/

¥ main ~ ¥ 2branches © 0 tags

Switch branches/tags X
‘rom BoraMutluoglu/local

‘ Find or create a branch... ’

reate Tutorial Skillet

Branches Tags
itial commit
v main default

/ itial commit

View all branches

local

KEAUNME.MQa

set_commands_tutorial

Tutorial Repository

¢ Unwatch

) Security |~ Insights 7 Settings

Go to file Add file v

93276ff 13 minutes ago

17 commits

22 minutes ago
7 days ago

7 days ago

7

_images/github_new_ssh_key.png
Go to your personal profile

SSH keys Newssiey |

This is a list of SSH keys associated with your account. Remove any keys that you do not recognize.

_images/generate_set_cli.png
Generate Set Commands From PAN-OS

Query a PAN-OS NGFW or Panorama to generate a list
of set commands based on the differences between two
configurations. You can compare any combination of
running, candidate, baseline, or previously saved
configurations.

Generate CLI

_images/github_add_key.png
SSH keys [Add new

Title
panhandler
Key

ssh-rsa

I, - _CNC

AddSSHkey

_images/html_sample.png
lang="en">

<title>The HH c d</title> _-

<meta namé="z ontent="SitePoint">

</head>

<a href="http://somegreatsite.co
</body>
</html>

_images/github_settings.png
8 o+~

Signed in as eplatz

@© setstatus

Your profile
Your repositories
Your codespaces
Your organizations
Your enterprises
Your projects

Your stars

Your gists

Upgrade
Feature preview
Help

Settings

Sign out

_images/green_debug.png
Branch:

local

Name of the branch in which to save these local changes
Commit Message:

Add variables to snippets

Message to add to commit log for this edit

_images/preamble_yaml_fill.png
Skillet Generator

Create a new Skillet
Skillet ID:

tag_edI_tutorial

Identifier of the Skillet to create

Skillet Label:

Tutorial skillet

Human Friendly Name of this Skillet
Skillet Description:

The tutorial skillet demonstrates the use of various config snippets and variables.

This should provide context for what this skillet will do
Skillet Type:

Template

Branch:

local

Name of the branch in which to save these local changes
Commit Message:

Create Tutorial Skillet

Message to add to commit log for this edit

Cancel

<

_images/pre_post_configs.png
Skillet Generator

Choose the pre and post configuration sources
Pre-Configuration Source:

skillet_baseline.xm!

This Configuration file willbe used as the before state fo the evaluation of differences
Post-Configuratin Source:

skilletbuilder.xml

‘This Configuration file will be used as the after state for the evaluation of differences

_images/push_github.png
Repository Detail for Set_Commands_Tutorial

Details

/

git@github.com:BoraMutluoglu/set_commands_tutorial.git

Update To Latest Remove Repository Create Skillet

Active Branch: local

_images/pull_message.png
Open a pull request

Create a new pull request by comparing changes across two branches. If you need to, you can also compare across forks.

N base:main~v & compare: local v v Able to merge. These branches can be automatically merged.

e

Added color coding table to skillet file

J

Write Preview H B T = O @ =i @ @ «a-

Add useful comment

Attach files by dragging & dropping, selecting or pasting them.

Create pull request

_images/push_skillet.png
Commit Options:

Do not Commit. Push changes only v

[J Perform Backup

Covuy | o | st

_images/push_local_changes.png
Repository Detail for SBTest

cal

This is a tutorial skillet used to demonstrate how to build a skillet with SkilletBuilder tools and PanHandler.

git@github.com:eplatz/SkilletBuilderTest.git

_images/play_snippet.png
Test Skillet

This tool will allow you to step through the execution of this skillet snippet by snippet using the provided context. Each snippet can add to the
context which will be passed to the next skillet. This is a great place to explore output capturing and other syntax options before saving your

skillet.
Snippet:

{

"name": "set_cli",

"element": "set devices tag {{ tag_name }} color {{ tag_color }}\nset
devices tag {{ tag_name }} comments {{ tag_description }}\nset
devices external-list {{ edl_name }} type ip recurring five-
minute\nset devices external-list {{ edl_name }} type ip description {{
ed|_description }}\nset devices external-list {{ edl_name }} type ip url
{{ url_name }}\nset devices rulebase security rules {{ edl_name }}-

Outputs:

©

X
Context:
{

"tag_name": "tag_name",

"edl_name": "edl_name",

"tag_description": "tag_description",

"edI_description": "ed|_description",

"tag_color": "tag_color",

"url_name": "url_name",

"loop™: "",
Y
=z

*Note the device configuration is always added to the context as the 'config' variable,
however it is filtered out in this view for brevity.

Step Through Snippets: \

set_cli cC » »

Skip Ahead to Snippet:

set_cli

Dismiss

_images/ph-example-skillet.png
PAN-OS Configuration on

Customize PAN-OS Skillet: Hello World Example (Set hostname)
Firewall hostname:

panos-hello-world

_images/playlist_creation.png
v [Playlist_Includes_Tutorial ~/STS_Projects/Playlist_Includes_Tutorial
> Menv

v M playlists
ironskillet_panorama_notshared_security_policies_10_0.skillet.yaml|
ironskillet_panos_alert_only_10_0.skillet.yaml
2 ironskillet_panos_full.skillet.yaml

> M submodules

i .gitignore
& .gitmodules
& LICENSE
#% README.md

_images/play_snippets.png
Step Through Snippets:

device-telemetry-225239

Skip Ahead to Snippet:

device-telemetry-225239 v

_images/pre_post_choose_cli.png
Skillet Generator (2]

Choose the pre and post configuration sources for set cli generation

Pre-Configuration Source: /

Previous_Running_1_2021/05/13 13:21:01 s
This Configuration file will be used as the before state for the evaluation of differences
Post-Configuratin Source: /

Previous_Running_2_2021/05/13 13:33:42 s

This Configuration file will be used as the after state for the evaluation of differences

Cancel Submit

_images/gen_from_files.png
Create a Skillet in SBTest

There are several ways to create a Skillet. Choose the option below that best suites your needs.

Generate From PAN-OS Generate From Uploaded Files
Query a PAN-OS NGFW o Panorama to generate a Skillet based on Generates a Skillet based on the differences between two uploaded
the differences between two configurations. You can compare any configuration files. This option is very useful when you do not have
combination of running, candidate, baseline, or previously saved APl access to a given device. Simply export two configuration files
configurations. and upload them into this tool to yield a repeatable Skillet.

_images/gen_from_panos.png
Create a Skillet in SBTest

There are several ways to create a Skillet. Choose the option below that best suites your needs.

Generate From PAN-OS Generate From Uploaded Files
Query a PAN-OS NGFW o Panorama to generate a Skillet based on Generates a Skillet based on the differences between two uploaded
the differences between two configurations. You can compare any configuration files. This option is very useful when you do not have
combination of running, candidate, baseline, or previously saved APl access to a given device. Simply export two configuration files
configurations. and upload them into this tool to yield a repeatable Skillet.

_images/find_tag.png
DASHBOARD ACC MONITOR POLICIES NETWORK DEVICE

E Addresses ! 2items | — X
=
\&) Address Groups D NAME O EATIEN e COMMENTS
Regions
& [J | sanctioned Predefined I oOlive
g Dynamic User Groups
E Applications [J empty Predefined

Application Groups
Application Filters
Services
#} Service Groups
Tags
@ Devic
@ GlobalProte
[HIP Objects
& HIP Profiles
|54 External Dynamic Lists
@ Custom Objects
Data Patterns
Spyware
@ Vulnerability
URL Category
@ Security Profiles
(%] Antivirus

122] Anti-Spyware

@ Vulnerability Protection
|% URL Filtering

(=] File Blocking

23 WildFire Analysis

B Data Filtering

@ DoS Protection

E Mobile Network Protectior
@ SCTP Protection

Security Profile Groups

@ Log Forwarding

@ Authentication

@ Decryption

@ Decryption Profile
SD-WAN Link Management
=2 Path Quality Profile

a Saa$S Quality Profile

@ Traffic Distribution Profile
@ Error Correction Profile

Schedules

(+) Add () PDF/CSV

_images/Generate_Skillet_offline_option.png
Generate Skillet Snippets From Uploaded Configs

Base Configuration:

Browse... No file selected.

Initial XML configuration from Before any changes are made
Modified Configuration:

Browse... No file selected.

XML configuration from After any changes are made

_images/Generate_Skillet_online_mode_menu.png
Generate Skillet Snippets From Device

Hostname:

10.10.10.10

Username:

admin

Password:

Configuration Source:
v From Running Configuration
From Candidate Configuration

_images/Generate_Set_Commands_set_commands.png
Completed: Generate set commands from configs

set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set
set

rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase
rulebase

security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security
security

rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules
rules

tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-out
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in
tutorial_skillet-in

tag block_list color colorl

tag block_list comments "block list tag"
external-list tutorial_skillet type ip recurring five-minute
external-list tutorial_skillet type ip description
external-list tutorial_skillet type ip url http://someurl.com

to any

from any

source any

destination tutorial_skillet
source-user any

category any

application any

service application-default
hip-profiles any

tag block_list

action deny

description "outbound EDL IP block rule. EDL info: "
to any

from any

source tutorial_skillet
destination any

source-user any

category any
application any

service application-default
hip-profiles any
tag block_list
action deny
description "inbound EDL IP block rule. EDL info: "

_images/Generate_Set_Commands_tile.png
Generate Set CLI Commands

Creates a list of CLI Set commands from
the difference between two XML config
files.

Skillet type: workflow

Collections: Skillet Builder, All

_images/Generate_Skillet_yaml_skeleton.png
Customize Template: Skillet YAML File Template
Skillet ID:

mySkillet

Skillet label (selection name in panhandler):

my_skillet_label

Skillet Description:

this is what my skillet does

Collection Name (aka grouping name):

myCollection

Skillet type (action taken by panhandler on Submit):

panos

_images/NGFW_info.png
PAN-OS Skillet

Configure Target information
PAN-OS IP:

10.70.221.176

Target Port:

443

PAN-0OS Username:

admin

PAN-OS Password:

Commit Options:

Do not Comit. Push changes only

O Perform Backup

[owur [ooes sore

_images/Generate_Skillet_running_or_offline.png
Generate a Skillet

QUL o

From Running NGFW
v From uploaded Configs

_images/Generate_Skillet_tile.png
Generate a Skillet

Generates a Skeleton Skillet
Skillet type: workflow

Collections: Skillet Builder, All

_images/Preview_XML_Changes_modifications_elements.png
oL Ul ALYy~
</rulebase>
<tag>
<entry name="block_list">
<color>colorl</color>

<comments>block list tag</comments>

</entry>
</tag>
<external-list>
<entry name="tutorial_skillet">
<type>
<ip>
<recurring>
<five-minute/>
</recurring>
<description/>
<url>http://someurl.com</url>
</ip>
</type>
</entry>
</external-list>
</entry>
</vVsys>
</entry>

_images/Preview_XML_Changes_modifications_xpaths.png
XML Modifications

The following xpaths were found to be modified:

./devices/entry[@name="1ocalhost.localdomain"]/vsys/entry[@name="vsys1"]/tag
./devices/entry[@name="1ocalhost.localdomain"]/vsys/entry[@name="vsys1"]/external-list
./devices/entry[@name="1ocalhost.localdomain"]/vsys/entry[@name="vsys1"]/rulebase/security

_images/Preview_XML_Changes_offline_mode_files.png
Preview XML Changes between Configs
Base Configuration:

Browse... No file selected.

Initial XML configuration from Before any changes are made
Modified Configuration:

Browse... No file selected.

XML configuration from After any changes are made

nav.xhtml

 Table of Contents

 		
 Skillet Builder Documentation

 		
 Skillet Builder Overview

 		
 Skillet Use Cases

 		
 Deploy

 		
 Configure

 		
 Assess

 		
 Skillet Players

 		
 Skillet Implementation

 		
 The Skillet Framework

 		
 Github

 		
 Github Repositories

 		
 Github Branches

 		
 Skillet Folders

 		
 Skillet Metadata File

 		
 Preamble

 		
 Variables

 		
 Snippets

 		
 SkilletBuilder Feedback

 		
 Support Policy

 		
 Skillet Types

 		
 docker

 		
 panorama

 		
 panorama-gpcs

 		
 panos

 		
 pan_validation

 		
 python3

 		
 rest

 		
 template

 		
 terraform

 		
 workflow

 		
 Metadata Attributes

 		
 Preamble Attributes

 		
 name

 		
 label

 		
 description

 		
 type

 		
 labels

 		
 Labels Attributes

 		
 collection

 		
 order

 		
 help_link

 		
 Variables Attributes

 		
 name

 		
 description

 		
 default

 		
 type_hint

 		
 source

 		
 toggle_hint

 		
 Snippets Attributes

 		
 name

 		
 cmd

 		
 xpath

 		
 element

 		
 file

 		
 path

 		
 operation

 		
 headers

 		
 output_type

 		
 outputs

 		
 input_type

 		
 image

 		
 label

 		
 severity

 		
 fail_message

 		
 pass_message

 		
 test

 		
 documentation_link

 		
 when

 		
 transform

 		
 cmd Options

 		
 set

 		
 edit

 		
 delete

 		
 get

 		
 move

 		
 parse

 		
 cli

 		
 validate

 		
 validate_xml

 		
 noop

 		
 custom inputs

 		
 Snippet Attributes per Skillet Type

 		
 Variables

 		
 Variable Types

 		
 cidr

 		
 disabled

 		
 dropdown

 		
 email

 		
 file

 		
 float

 		
 fqdn_or_ip

 		
 hidden

 		
 ip_address

 		
 json

 		
 list

 		
 number

 		
 password

 		
 radio

 		
 text

 		
 text_area

 		
 url

 		
 Dynamic UI Elements

 		
 source

 		
 toggle_hint

 		
 Panhandler Generated UI

 		
 Jinja and Skillets

 		
 Jinja Variable

 		
 Ensuring All Variables Are Defined

 		
 Jinja If Conditional

 		
 Jinja For Loop

 		
 Jinja Filter

 		
 Jinja Whitespace Control

 		
 Custom Jinja Filters

 		
 Capturing XML Objects

 		
 Checking Attributes

 		
 attribute_present

 		
 attribute_absent

 		
 Checking an Element Value

 		
 element_value

 		
 Checking Tags

 		
 tag_present

 		
 tag_absent

 		
 Checking a Set of Element Values

 		
 element_value_contains

 		
 XML and Skillets

 		
 XML Basics

 		
 XML Format

 		
 XML Structure

 		
 Tools to Find the XPath

 		
 Web UI Debug

 		
 Web UI XML API Explorer

 		
 CLI Debug

 		
 Skillet Generator

 		
 Parsing XML

 		
 Parsing Syntax Basics

 		
 Output an XML Element

 		
 Output a List based on Attribute Name

 		
 Output a List Filtered on a Text Value

 		
 XPath Query Tips

 		
 Capture Output

 		
 capture_list

 		
 capture_object

 		
 capture_value

 		
 capture_pattern

 		
 Skillets and GitHub

 		
 Create a New GitHub Repository

 		
 Add SSH Keys from PanHandler into GitHub

 		
 Import a Repository into PanHandler

 		
 Create a Skillet Directory

 		
 Use Submodules

 		
 Skillet Builder Tools

 		
 Generate a Skillet

 		
 Generator Offline Mode

 		
 Generator Online Mode

 		
 Skeleton YAML file attributes

 		
 Copy the Rendered Output to .meta-cnc.yaml

 		
 Preview XML Changes

 		
 XML Preview Offline Mode

 		
 XML Preview Online Mode

 		
 View the Changes

 		
 Generate Set CLI Commands

 		
 Generate Set Commands Offline Mode

 		
 Generate Set Commands Online Mode

 		
 View the Rendered Output

 		
 Skillet Test Tool

 		
 Skillet Test Offline Mode

 		
 Skillet Test Online Mode

 		
 Debug Mode

 		
 Skillet Content

 		
 Test Tool Output

 		
 Configuration Explorer Tool

 		
 Config Explorer Offline Mode

 		
 Config Explorer Online Mode

 		
 XPATH Query

 		
 Configuration Explorer Output

 		
 Sample Configuration Skillet

 		
 Sample Validation Skillet

 		
 Skillet YAML File Template

 		
 Building and Testing with PanHandler

 		
 Loading the Master or Develop Versions

 		
 Checking your Current Version

 		
 Updating or Running the Dev Version

 		
 Updating or Running the Master Version

 		
 Pruning Images

 		
 Playing Skillets from the Repo Detail Page

 		
 Using Environments to Switch between Devices

 		
 Testing with the SkilletBuilder Tools

 		
 Checking Variable Values with Context

 		
 Using Template Skillets to View Values

 		
 Using Local Variables to Test Workflow Logic

 		
 Building and Testing with Appetizer

 		
 Quickstart

 		
 Building and Testing with SLI

 		
 Install SLI

 		
 Use SLI to Perform a Configuration Difference

 		
 Play a Skillet with SLI

 		
 Store User Context in SLI

 		
 Help with SLI

 		
 Configuration

 		
 Overview

 		
 Prerequisites

 		
 Build the Skillet

 		
 Create the Configuration in the NGFW

 		
 Generate the Skillet from Uploaded Files [Offline Mode]

 		
 Generate the Skillet from PAN-OS [Online Mode]

 		
 Add Variables to Snippets

 		
 Edit Variable Types

 		
 Test and Troubleshoot

 		
 Debug

 		
 Commit and Save

 		
 Play

 		
 Document

 		
 README.md

 		
 Live Community

 		
 Set Commands

 		
 Overview

 		
 Navigation Menu

 		
 Prerequisites

 		
 Building Skillets with Set Commands

 		
 Create the Configuration in the NGFW

 		
 Generate the Set Commands Skillet

 		
 Working with Snippets and Variables

 		
 Using SLI to Perform a Configuration Difference

 		
 Test and Troubleshoot

 		
 Debug

 		
 Play the Skillet

 		
 Commit and Save

 		
 Document

 		
 Live Community

 		
 SkilletBuilder Support Policy

 		
 Validation

 		
 Overview

 		
 Prerequisites

 		
 Example .meta-cnc.yaml File

 		
 Skeleton Validation YAML File

 		
 Validation Tests

 		
 NTP Servers

 		
 Password Complexity

 		
 URL-Filtering and Malware

 		
 Security Rules with Profiles

 		
 Push to Github and Test in panHandler

 		
 Edit the README.md Docs

 		
 Workflow

 		
 Overview

 		
 Prerequisites

 		
 Design the Solution

 		
 Design this Tutorialâ��s Solution

 		
 Build the Skillet

 		
 Set-up the Directory Structure

 		
 Create the Workflow Skillet Skeleton

 		
 Add Variables to the Skillet

 		
 Add Snippets to the Skillet

 		
 Push the Skillet to GitHub

 		
 Test and Troubleshoot

 		
 Test the Skillet in PanHandler

 		
 Test the Skillet with SLI

 		
 Document

 		
 README.md

 		
 LIVEcommunity

 		
 Playlist Includes

 		
 Overview

 		
 Prerequisites

 		
 Set Up the Submodule

 		
 Add the Submodule

 		
 Sub-Skillets in Submodule

 		
 Build the Playlist

 		
 Set Up the Directory Structure

 		
 Playlist Preamble

 		
 Including Snippets

 		
 Including Variables

 		
 Test and Troubleshoot

 		
 Import the Playlists

 		
 Debug and Play the Playlist

 		
 Edit, Push, Test

 		
 Document

 		
 README.md

 		
 LIVEcommunity

 		
 Other Applications

 		
 Example Skillet

 		
 XML Fragment

 		
 .meta-cnc file

 		
 Rendered Form

 		
 Example Validation Skillet

 		
 .meta-cnc.yaml

 		
 More Example Skillets

 		
 Example Skillets by Type

 		
 Example Skillets by Feature

 		
 External Skillet Repositories

_images/Preview_XML_Changes_tile.png
Preview XML Changes

Find and highlight differences between
two configs

Skillet type: workflow

Collections: Skillet Builder, All

_images/Sample_Configuration_input_variables.png
Customize PAN-OS Skillet: Sample SkilletBuilder skillet with EDL, tag, and security policy
name of the external list:

tutorial_skillet

description of the external list:

this is an ip block list policy

external list url:

http://someurl.com

tag name:

block_list

tag description:

block list tag

tag color:

red j

_images/Preview_XML_Changes_offline_or_online_mode.png
Workflow (2K

Preview XML Changes

Select from where you would like to compare changes. Either from a device or from a set of uploaded configurations.

_images/Preview_XML_Changes_online_mode_API_values.png
Preview XML Changes from device

Hostname:

10.10.10.10

Username:

admin

Password:

Configuration Source:
v From Running Configuration
From Candidate Configuration

_images/Sample_Validation_tile.png
Sample Validation Skillet

Short set of validations for skilletBuilder
training tutorial with ntp check,
password complexity, URL filtering for
malware, and security allow rules with
profiles or groups

Skillet type: pan_validation

Collections: Skillet Builder, Validation, All

_images/Skeleton_YAML_inputs.png
Customize Template: Skillet YAML File Template
Skillet ID:

mySkillet

Skillet label (selection name in panhandler):

my_skillet_label

Skillet Description:

this is what my skillet does

Collection Name (aka grouping name):

myCollection

Skillet type (action taken by panhandler on Submit):

! panorama !

. template w
| rest

python

terraform

validation

workflow

_images/Sample_Configuration_tile.png
Sample SkilletBuilder skillet with EDL,
tag, and security policy

Used by SkilletBuilder to demonstrate
skillet creation and loading and cross-
element variables

Skillet type: panos

Collections: Skillet Builder, All

_images/Sample_Validation_output.png
Sample Validation Skillet

#

Check

configure primary and secondary ntp servers
configure strong password complexity (>= 12 chars)
check that all url profiles block category malware

check that all allow security policies have a profile or group

Results

Passed

Passed

Failed

Passed

Severity
low

low

high

medium

Documentation
Documentation
Documentation

Documentation

_images/Skeleton_YAML_tile.png
Skillet YAML File Template

Used in panhandler to generate a .meta-
cnc.yaml skeleton file. This will create a
generic skeleton based on the skillet
type selected with placeholder values

Skillet type: template

Collections: Skillet Builder, All

_images/Skillet_Test_Tool_debug_mode_select.png
Show Debug Output:

False

_images/Skillet_Test_Tool_offline_mode_text_box.png
Skillet Test Tool

Configuration Mode:

Offline

Online will query a PAN-OS device via API, Offline will allow you to paste in a full Configuration.
Offline Config:

<?xml version="1.0"?>
<config version="9.0.0" urldb="paloaltonetworks">
<mgt-config>
<users>
<entry name="admin">
<phash>1sjmbecxn$1LOiIrdFOc7WmIQ6zr8mbDn.</phash>
<permissions>
<role-based>
<superuser>yes</superuser>
</role-based>

Paste in a full PAN-OS Configuration here for offline mode.

_images/Skillet_Test_Tool_skillet_content.png
Skillet Content:

part of the panhandler application with docs at
https://github.com/PaloAltoNetworks/panhandler/blob/develop/docs/metadata_configuration.rst

unique snippet name

name: SkilletBuilderSample_EDL_policy

label used for menu selection

label: Sample SkilletBuilder skillet with EDL, tag, and security policy

description: Used by SkilletBuilder to demonstrate skillet creation and loading and cross-element variables

type of device configuration
common types are panorama, panos, and template

type: panos
preload static or default-based templates
extends:

grouping of like snippets for dynamic menu creation in panhandler
labels:

_images/Skillet_Test_Tool_tile.png
Skillet Test Tool

Allows you to paste in a Skillet and test it
inline without having to first upload to a
Git repository

Skillet type: python3

Collections: Skillet Builder, All

_images/Skillet_Test_Tool_oneline_mode_API_values.png
Skillet Test Tool

Configuration Mode:

Online j

Online will query a PAN-OS device via API, Offline will allow you to paste in a full Configuration.
Hostname:

192.168.55.128

Username:

admin

Password:

Online Configuration Source:

v Running Configuration
Candidate Configuration

D b a L Ll i e

_images/Skillet_Test_Tool_output.png
Completed: Skillet Test Tool

{'snippets': {'object_tag': {'results': 'success', 'changed': True}, 'object_edl': {'results': 'success', 'changed': True},
'policy_security_outbound': {'results': 'success', 'changed': True}, 'security_policy_inbound': {'results': 'success', 'changed': True}},
‘outputs': {}, 'result': 'success', 'changed': True}

part of the panhandler application with docs at
https://github.com/PaloAltoNetworks/panhandler/blob/develop/docs/metadata_configuration.rst

unique snippet name

name: SkilletBuilderSample_EDL_policy

label used for menu selection

label: Sample SkilletBuilder skillet with EDL, tag, and security policy

description: Used by SkilletBuilder to demonstrate skillet creation and loading and cross—element variables

type of device configuration
common types are panorama, panos, and template

type: panos
preload static or default-based templates

extends:

grouping of like snippets for dynamic menu creation in panhandler

_images/XML_CLI_debug_xpath.png
admin@testNGFW>

admin@testNGFW> debug cli on

(leaf-tag: cli value: on)

(Ceol-matched: . #t) (cli-handler: . debug-cli-handler) (context-inserted-at-end-p: . #f))

admin@testNGFW> configure

O

((context-inserted-at-end-p: . #t))

Entering configuration mode

[edit]

admin@testNGFW# show tag

(container-tag: tag)

(Ceol-matched: . #t) (eol-matched: . #t) (xpath-prefix: . /config/devices/entry[@name="1localhost.localdomair
1/vsys/entry[@name="vsys1']) (context-inserted-at-end-p: . #f))

/usr/local/bin/pan_ms_client --config-mode=default --set-prefix="set ' --cookie=4370611250345232 <<'EOF' |Is
d 2>/dev/null -e 's/devices localhost.localdomain//' |/usr/bin/less -X -E -M

PR VIS il el e e TSY eI Bl / config/devices/entry[@name="1localhost. localdomain']/vsys/entry[@name="vsys1']/tag|
/request>

EOF

>

tag {
block_list {
color colorl;
comments "block list tag";
}
"tag name" {
color colorl;
comments "tag description”;
}
demo_tag {
color colorl;

}

_images/XML_explorer_element.png
Execution Results:

<entry name="block_list">
<color>colorl</color>
<comments>block list tag</comments>

</entry>

<entry name='"tag name">
<color>colorl</color>
<comments>tag description</comments>

</entry>

<entry name="demo_tag">
<color>coloré</color>

</entry>

</tag>

json
{
"tag": {
"entry": [
{
"@name": "block_list",
"color": "colorl",
""comments": "block list tag"
1
}

_images/XML_API_explorer.png
XML API

_images/XML_API_explorer_xpath.png
XML API > Configuration Commands > devices > entry[@name='localhost.localdomain'] > vsys > entry[@name='vsys1'] > tag

block_list
demo_tag
tag_name

XPath

/config/devices/entry[@name="localhost.localdomain']/vsys/entry[@name="vsys1']/tag

_images/XML_explorer_list_of_names.png
xml:
List of items:

block_list
tag name
demo_tag

_images/XML_skillet_generator_xpath.png
— name: entry-403005
xpath: /config/devices/entry [@ame="Tocalhost.localdomain"]/vsys/entry [@ame="vsys1"]/tag
element: |-
<entry name="demo_tag">
<color>colorl</color>
</entry>

_images/XML_explorer_filter_text.png
xml:

List of items:

block_list
tag name

_images/add_edl.png
DASHBOARD ACC MONITOR POLICIES NETWORK DEVICE

Manual v |5 @
C litem — X

E Addresses
=
Address Groups [J | NaME LOCATION DESCRIPTION SOURCE CERTIFICATE PROFILE FREQUENCY

g Regions

g Dynamic User Groups Dynamic URL Lists

E Applications [C] | Palo Alto Networks - Predefined Domains and URLs to exclude Palo Alto Networks -
— - Authentication Portal Exclude from Authentication Policy. Authentication Portal Exclude
&= Application Groups List This list is managed by Palo List

Application Filters Alto Networks.

\=5] Services
Service Groups
Tags
@ Devices
@ GlobalProtect
[HIP Objects
E HIP Profiles
External Dynamic Lists
@ Custom Objec
Data Patterns
Spyware
@ Vulnerability
URL Category
@ Security Profiles
|%) Antivirus
122] Anti-Spyware
@ Vulnerability Protection
|% URL Filtering
(=] File Blocking
23 WildFire Analysis
B Data Filtering
@ DoS Protection
E Mobile Network Protectior
@ SCTP Protection
Security Profile Groups
@ Log Forwarding
@ Authentication
@ Decryption
@ Decryption Profile
SD-WAN Link Management
=2 Path Quality Profile
a Saa$S Quality Profile
@ Traffic Distribution Profile
@ Error Correction Profile

Schedules

() Add (©) PDF/CSV List Capacities 4 Group By Type

_images/alert_only_variables.png
PAN-OS Configuration

Customize PAN-OS Skillet: IronSkillet Alert-Only 10.0
sinkhole FQDN IPv4:

sinkhole.paloaltonetworks.com
FQDN value for the IPV4 sinkhole address used in the anti-spyware security profile
sinkhole address IPv6:

2600:5200::1

IP address for the IPV6 sinkhole used in the anti-spyware security profile

ow

_images/XML_web_UI_debug.png
Minimize Javascript QCIear debug @Refresh QClear Preferences Request/Response Console

Debug

_images/XML_web_UI_debug_search.png
</completions></response>

[2020/04/06 16:30:10] user=9180812178920421

<request cmd="set" obj="/config/devices/entry[@name="localhost.localdomain']/vsys/entry[@name="vsys1l']/tag/entry[@name="demo_tag']"
<color>colorl</color>

</request>

[2020/04/06 16:30:10] user=9180812178920421

Response took 0.132s <response status="success" code="20"><msg>command succeeded</msg></response>

r2e20/04/06 16:30:1071 user=9180812178920421

_images/commit_and_save.png
Branch:

local

Name of the branch in which to save these local changes
Commit Message:

Add variables to snippets

Message to add to commit log for this edit

_images/all_variables.png
Variables:

o

o

o

o

o

edl_url

edl_name

tag_name

tag_color

tag_description

edl_url

edl_name

tag_name

tag_color

tag_description

=
=
=
=
=

_images/clone_ssh_link.png
Clone @

HTTPS SSH GitHub CLI
git@github.com:eplatz/SkilletBuilderTe |7

Use a password-protected SSH key.

¥ Open with GitHub Desktop

[Download ZIP

_static/file.png

_static/minus.png

_static/logo_skilletmaster.png

_static/plus.png

_images/workflow_directory_structure.png
v

Workflow_Tutorial
edl_xml_policy_workflow
wme config_xml_edl_policy.skillet.yaml
= template_output_report.j2
wme template_xml_edl_policy.skillet.yaml
yme Validate_xml_edl_policy.skillet.yaml
yme workflow_tutorial.skillet.yaml

o -gitignore
= LICENSE
sin: README.md

_images/workflow_completed.png
Step 4: Sample SkilletBuilder workflow for EDL validation and configuration / Sample template skillet used for workflow tutorial

output

WORKFLOW COMPLETED

The External Dynamic List, named Testing_EDL, was added to the configuration of the NGFW (192.168.1.43). In addition, security policies with the tag
Test_tag were configured to deny traffic to and from this EDL.

For a step-by-step tutorial on building workflows, please navigate to the Workflow Tutorial in the SkilletBuilder documentation.

_images/workflow_sequence.png
Workflow Execution Sequence

Promptsuserfor Conditionally runs Pushes a configurationthat Conditionally runs Outputsan
input about: validation skillet createsanEDLobject,atag valid